Institution: Savannah State University

Institutional Contact (President or Vice President for Academic Affairs): Dr. Earl G. Yarbrough, President

Date: March 26, 2010

School/Division: College of Sciences and Technology (COST)

Department: Department of Teacher Education (New)

Departmental Contact:

Name of Proposed Program/Inscription: The Bachelor of Science in Technology Education

Degree: Bachelor of Science in Education

Major: Technology Education

CIP Code: 13.1309

Anticipated Starting Date: Fall 2012
Table of Contents

1. Program Description and Objectives .. 3
2. Description of the program’s fit .. 8
3. Description of how the program demonstrates demand ... 9
4. Brief description of institutional resources .. 9
5. Curriculum .. 11
 - Course of Study .. 11
 - Sample Plan of Study .. 15
 - Courses Existing or New ... 16
6. Admissions criteria .. 18
7. Availability of assistantships .. 20
8. Student learning outcomes .. 20
9. Administration of the program .. 21
10. Waiver to Degree-Credit Hour ... 22
11. Accreditation ... 22
12. Projected enrollment .. 22
14. Fiscal, Facilities, Enrollment Impact, and Estimated Budget 23
Appendix A: Course Descriptions .. 32
Appendix B: Accreditation Standards ... 39
Appendix C: Faculty Directly Involved With the New Degree Program 61
Appendix D: Endorsement Documents ... 62
1. Program Description and Objectives:

The proposed Bachelor of Science degree in Technology Education develops effectiveness in technological literacy, leadership, and other skills necessary to ensure the student is proficient in teaching at the secondary level (6-12). The plan of study curriculum requires a solid background of education classes as well as essential content courses. A strong emphasis is placed on grade-relevant field experiences throughout the program. Teacher candidates are required to demonstrate the knowledge, skills, and dispositions needed to have a positive impact on student achievement.

The Bachelor in Science in Technology Education allows the student to pursue the Technology Education major with a concentration in secondary education teaching licensure. The Technology Education major is grounded in the theoretical knowledge base with sound educational classroom practices. Students in the Technology Education major will have practicum experiences in EDUC2110 - Investigation of Critical/contemporary Issues, EDUC2130 - Exploring Socio-Culture, EDUC2130 - Exploring Teaching and Learning, Methods of Teaching, and a 16 week Student Teaching/Internship. The methods courses and related courses are integral with a common core of teaching strategies and issues. All students pursuing the Bachelor of Science in Technology Education must complete 33 credit hours of coursework in education. The total degree requirements are 125 credit hours which includes the optional university requirements.

Technology Education is a discipline with a national accrediting body. The proposed program is designed to satisfy all the accreditation requirements of Southern Association of Colleges and Schools (SACS), International Technology Education Association/Council for Technology Teacher Educator (ITEA/CTTE), Georgia Professional Standards Commission (GPSC), and National Council for Accreditation of Teacher Education (NCATE).

a. Objectives

The program’s objectives are based on multiple inputs, including recommendations of an external consultation, education committee, and faculty. The goals and objectives of the program focus on enhancing quality, increasing scholarly activities, and outreach efforts. The goals and objectives were adopted by the faculty of the College of Sciences and Technology where the new department will be located. The new goals and objectives will serve as the basis for programmatic strategic and action planning. The objectives are aligned with GaPSC and NCATE standards.

General program objectives:

- knowledgeable of disciplines taught in school and familiarity with materials in those fields;
- understand human development according to currently accepted theory and research, which implies a thorough familiarity with the developmental characteristics of students at the stage of development at which they expect to teach, and skill in observing and understanding behavior;
familiar with theories of learning and motivation and ability to use this knowledge in facilitating learning by students in educational settings;
ability to organize and manage the classroom for developmentally appropriate learning and to maintain an effective learning environment taking into account the diversity of the individual and cultural differences;
novel teaching techniques appropriate to the learners with whom the candidate will be working;
foster learning, growth and development in students for whose education the teacher is responsible;
understand the organizational structures of the schools and resources at school district and state levels;
design lessons with a global view of the function of schools in a democracy and familiarity with social, political and economic factors affecting schools and educational policy; and
integrate the use of technology appropriate to the teaching and learning situation.

b. Needs the program will meet:

(1) Nationally, publications continue to report the extreme need for technology education teachers. Although the data varies from state to state, a report by the National Center for Education Statistics (NCES) has estimated that the United States will need between 1.7 and 2.7 million new teachers by 2008. The 2000 Educator Supply and Demand in the United States, developed by the American Association for Employment in Education, reports that the need for technology education teachers was 4.17 on a 5 point scale, indicating some shortages. Figures reported between 5.00 and 4.21 indicated considerable shortages. Regions with considerable shortages of technology teachers were the U.S. Midwest (4.44), the Southeastern States (including Georgia) (4.31), the Mid-Atlantic States (4.54), and the Northeastern States (4.29) (AAEE, 2001).

(2) According to the U.S. Department of Education Office of Postsecondary Education Policy & Budget Development Staff’s Teacher Shortage Areas National Listing 1990-91 thru 2009-10 (2009), Georgia has had a shortage of Technology Education teachers over the past 13 years.

(3) National documents show that Middle School and High School teachers in the Science, Technology, Engineering, and Mathematics (STEM) programs are in high demand in many states including Georgia.

“According to the White House, a substantial STEM teacher shortage exists today. Overall, up to one million teachers will need to be recruited over the next five years, and vacancies in math and science are often among the hardest to fill”.
“Our commitment to growing the STEM teacher corps is evident by the sheer number of our members receiving awards today,” said Van Roekel. Fifty-six of the 100 honorees are NEA K-12 and higher education members... (Source http://www.nea.org/home/37542.htm)

Kelly C Henson (2008), Executive Secretary of the Georgia Professional Standards Commission in a report stated; “By 2012, 28,749 new teachers will be needed that year to meet growth and replacement demands. In the same report, the Alliance of Education Agency Heads recommended:

- Georgia students must have available high-level science and mathematics courses in order to compete nationally and internationally
- Increase Science Teacher Education Programs
- Increase flexibility for institutions to design preparation programs
- Design and implement statewide intensive new teacher induction program
The USG Presidents’ Science, Technology, Engineering, and Mathematics (STEM) Initiative (2009) report below shows the critical need for STEM programs.

STEM Report

MATH + SCIENCE = SUCCESS

USG Presidents’ Science, Technology, Engineering, and Mathematics (STEM) Initiative

Charge: Increase the number of K-12 students interested in mathematics/science/engineering, the number of students in college who pursue the STEM disciplines, and the number of teachers prepared who are better able to keep K-12 students in the STEM pipeline.

Intended Outcomes: Excellence in the STEM Initiative is defined as meeting the following intended outcomes:

<table>
<thead>
<tr>
<th>Item #</th>
<th>By Year</th>
<th>Intended Outcome of the University System of Georgia</th>
<th>Baseline</th>
<th>Baseline Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013</td>
<td>Number of baccalaureate degrees in STEM disciplines will increase to at least 7,200<sup>2</sup></td>
<td>4,726<sup>1</sup></td>
<td>2006</td>
</tr>
<tr>
<td>2</td>
<td>2013</td>
<td>Number of baccalaureate degrees in engineering and engineering technology will increase to at least 2,800<sup>2</sup></td>
<td>1,828<sup>1</sup></td>
<td>2006</td>
</tr>
<tr>
<td>3</td>
<td>2013</td>
<td>Number of baccalaureate degrees with a major in mathematics will increase to at least 400</td>
<td>196<sup>1</sup></td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>2013</td>
<td>Number of baccalaureate degrees with majors in chemistry, geosciences, and physics will increase to at least 420, 80, and 130, respectively</td>
<td>215-Chem</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41-Geo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67-Phys</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2013</td>
<td>Number of middle grades teachers with a concentration in mathematics will increase to at least 480 per year</td>
<td>276</td>
<td>2006</td>
</tr>
<tr>
<td>6</td>
<td>2013</td>
<td>Number of middle grades teachers with a concentration in science will increase to at least 350 per year</td>
<td>200</td>
<td>2006</td>
</tr>
<tr>
<td>7</td>
<td>2013</td>
<td>Number of high school mathematics teachers will increase to at least 270 per year</td>
<td>135</td>
<td>2006</td>
</tr>
<tr>
<td>8</td>
<td>2013</td>
<td>Number of high school science teachers will increase to at least 160 in Biology, 45 in Chemistry, 15 in Physics, and 20 in Earth Sciences</td>
<td>54</td>
<td>2006</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>Success rates with a grade of C or better in introductory STEM courses will increase to at least 75%</td>
<td>50%-70%</td>
<td>2006</td>
</tr>
<tr>
<td>10</td>
<td>2013</td>
<td>Number of high school students taking college preparatory science and mathematics courses will increase by at least 20%</td>
<td>67% or 55,077</td>
<td>2006</td>
</tr>
</tbody>
</table>

Currently, no USG programs are in the service area offering the Bachelor of Science in Technology Education. The proposed degree program at Savannah State University could supply additional technology education teachers in its service area (Chatham, Bryan, and Effingham counties) and the southeastern region of Georgia. Additionally, Savannah State University (SSU) has been the main aperture through which ethnic minorities in Georgia have entered the technical professions. The University offers quality education in science, technology, engineering and mathematics (STEM). Significant challenges to maintaining the quality of academic programs have been to recruit and retain minority students in large numbers and to encourage them to continue their education in graduate schools in these disciplines.

Graduates of the new degree program can continue their education at the graduate level through the campus Minority Access to Graduate Education and Careers in Science, Technology,
Engineering and Mathematics (MAGEC-STEM) program. MAGEC-STEM is designed to establish a framework for the production of a continuous stream of highly competent and well qualified minority scientists, technologists, engineers and mathematicians. This goal will be achieved through a vigorous and cost effective implementation of a number of activities, such as faculty development, curriculum review and revision, infrastructure development, student tracking and midstream interventions, career counseling and exploration, experiential training, a pre-freshman/head-start program, and selective recruitment to ensure a perpetual supply of high-ability/high-potential STEM students.

c. Brief explanation of how the program is to be delivered

The program will be delivered through innovative use of technology blended within the context of the traditional classroom and field experience format. This blended format will provide opportunities for flexible hybrid courses (combinations of face-to-face, online and virtual); online courses using Blackboard Class Management Software; and virtual classrooms using Polycom Telepresence Solutions, Wimba Classroom Suite, Skype, WizIQ, etc.)

d. Prioritization within the institution’s strategic plan

The proposed program supports the institution’s strategic plan:

The university’s strategic plan focuses on “value added” and demonstrates the support of expanding opportunities for the university to meet the needs of community and region. The proposed new Bachelor of Science in Technology Education program encompasses and is integral to the central focus of the strategic plan by providing opportunities for students (traditional and non-traditional) to add value to the community, region and across the state. Once approved and implemented, the new program aligns well with Goals 1 and 2 of the university’s Strategic Plan “Vision 2018”.

Goal 1: Savannah State University will maximize its comparative advantage through academic excellence, applied learning, effective educational support, and community involvement.

Goal 2: Savannah State University will continue to build its institutional capacity through the continuous improvement and expansion of academic programs, student support, infrastructure, technology, and community relations.

Additionally, the proposed new program aligns with the USG’s vision statement, mission, and strategic goals:

Board of Regent’s Vision: “The University System of Georgia will create a more educated Georgia, well prepared for a global, technological society, by providing first-rate undergraduate and graduate education, leading-edge research, and committed public service.”
The mission of the University System of Georgia is to contribute to the educational, cultural, economic, and social advancement of Georgia by …providing excellent undergraduate general education and first-rate programs leading to associate, baccalaureate, masters, professional, and doctorate degrees.

“The University System of Georgia will create a more educated Georgia, well prepared for a global, technological society, by providing first-rate undergraduate and graduate education…”

Strategic Goal One: Renew excellence in undergraduate education to meet students’ 21st century educational needs.

Strategic Goal Two: Create enrollment capacity to meet the needs of 100,000 additional students by 2020.

2. Description of the program’s fit with the institutional mission and nationally accepted trends in the discipline.

The proposed Bachelor of Science in Technology Education is integral to the nationally accredited program in the liberal arts and sciences described in the mission of the university. The proposed education program fits well within the mission of the university by developing teachers who will be productive members of a global society providing high quality instructions, scholarship, research, and service to the SSU community. The new program will use a variety of technological tools to deliver program content demonstrating strength of the university’s College of Sciences and Technology.

Mission of Savannah State University:
As a unit of the University System of Georgia, Savannah State University offers nationally accredited programs in liberal learning, sciences, fine arts, and the professions. The University is committed to the development of leaders and high quality instruction, supported by scholarship, research, and environmental enrichment with emphasis on the African American heritage and culture and international interaction.

Mission of the new Department of Teacher Education:
The primary mission of the Department of Teacher Education (DOTE) is to prepare professional educators with the knowledge, skills, and dispositions to serve the diverse educational and technological needs of the region. The DOTE emphasizes efficient and successful teaching practices, policies, and procedures based on state and national standards to enhance efficiency of academic achievement of all Pre K-12 students. To fulfill this mission, faculty: design, deliver, and continually improve highly effective programs for pre-professionals through advanced graduate and professional levels; promote and are influenced by the reciprocal relationship between scholarship and practice; collaborate with colleagues across the campus and in other professional and community settings as partners in the mission; and provide leadership in teaching, learning, assessment, and professional development for diverse community within and outside the University.
National Trends:
The proposed Technology Education program will focus on national trends surrounding STEM.

National-level assessment of U.S. students’ knowledge of math and science is a relatively recent phenomenon, and assessments in other countries that provide for international comparisons are even more recent. Yet the limited information available thus far is beginning to reveal results that concern many individuals interested in the U.S. educational system and the economy’s future competitiveness. The most recent assessments show improvement in U.S. pupils’ knowledge of math and science; however, the large majority still fails to reach adequate levels of proficiency. Moreover, when compared to other nations, the achievement of U.S. students is seen by many as inconsistent with the nation’s role as a world leader in scientific innovation.

http://www.fas.org/sgp/crs/misc/RL33434.pdf

3. Description of how the program demonstrates demand and a justification of need in the discipline and geographic area and is not unnecessary program duplication.

The U.S. Department of Education (2009) data has listed technology education (6-12) on the critical teacher shortage list for Georgia. Currently, all USG Technology Education undergraduate degree programs have been deactivated. The proposed Technology Education degree program will be different from the tradition programs that have been deactivated. Our proposed program will be modeled after a successful technology education degree program at the University of Arkansas where technology education and engineering technology have developed a hybrid program that even in its early year is attracting students. We believe by designing the proposed program with the STEM based engineering technology program at SSU, we can be successful and become a model for other USG universities to retrofit technology education programs to meet the need of producing more technology/engineering education teachers.

There are three colleges/universities in the immediate service area of Savannah State University. After reviewing the inventory of academic programs from the USG website, the proposed program will not duplicate existing degree programs at Armstrong Atlantic University, Georgia Southern University or Georgia Coastal College. Regional demographic data show public schools in the service area are offering 6-12 programs related to the proposed program

4. Brief description of institutional resources that will be used specifically for the program (e.g., personnel, library, equipment, laboratories, supplies & expenses, capital expenditures at program start-up and when the program undergoes its first comprehensive program review.

Personnel – Personnel needs for the proposed degree program are: One administrative position (Director); one methods faculty position (first two years; third year an additional faculty position will be requested), one assessment coordinator, and an administrative assistant. Currently, funds
are available to support this position by reallocating budgeted funds and revenues generated from overall university enrollment increases. Advertisements for the methods faculty positions will indicate that applicants need to be qualified for both undergraduate and graduate assignments. Projected cost for all personnel is discussed in the budget narrative later in this proposal. There are adequate faculty members in the content discipline to begin the program.

Library - The ASA H. Gordon Library resources are currently adequate to support the needs of the program. Gordon Library provides access to an integrated, web-based catalog of all the book collections of the University System of Georgia (over six million volumes - 60% of the titles are unique), a circulation system with self-service options, cataloging, and check-in and control functions. The library, which houses the university archives, is home to an extensive collection of material about African-Americans. As part of the library’s participation in GALILEO, Georgia’s statewide virtual library, students have access to over 400 full-text journal titles in the subject area of education.

The proposed degree program will need a Curriculum Materials/Media Center (CMC). The CMC will be located in the current library. The DOTE will need $20,000 to begin the process of building resources to develop a CMC. The CMC will employ modern technology in services offered to increase users’ social, intellectual, and global interaction. The CMC will be integral to the library and subscribes to a limited number of CD-ROM databases and print resources from other institutions that may be accessed through interlibrary loan.

Equipment - The program will employ existing classroom technology presently available in the COST. There are no additional needs anticipated when the program undergoes the Comprehensive Program Review. There are additional available classroom spaces properly outfitted with computers, software, and digital projectors that could be used as enrollment expands.

Laboratories - As with the equipment and classroom needs cited above, existing laboratories will be sufficient to support the new program.

Supplies and Expenses – The cost of supplies and expenses will be minimal and can be absorbed in the normal budgeting for COST supplies and expenses.

Capital - All facilities and furnishing needed to support the proposed program are already in place and are sufficient to meet new program accrediting body’s requirements.

Facilities – Our current College of Sciences and Technology facilities are adequate and can support the needs of the new degree program.

Start-up Costs - The primary costs for start-up of the program will focus on the purchase of library/learning resources, and marketing and advertising. Other start-up costs will be covered through Education and General (E & G) funds. Approximate start-up costs for the program will be $13,017 to cover recruitment, accreditation fees, assessment system software, and marketing.
Operating Costs - Operating costs will include consumable supplies, travel for professional development of faculty, and the purchase of additional library/learning resources for the ASA H. Gordon Library center library (see below). Approximate operating costs for the first two years will be $7,764; fees collected from increased enrollment will defray costs not covered through E & G funds.

5. Curriculum: List the entire course of study required and recommended to complete the degree program. Provide a sample program of study that would be followed by a representative student.

Course of Study

Bachelor of Science
Technology Education (6-12)

Core Curriculum Grid
All students should complete the sixty hours of core curriculum requirements during their first two years of enrollment and prior to their enrollment in their major classes, exclusive of those specified in Area F (courses appropriate to the program of study) of the core.

In addition to the sixty hours in Areas A, B, C, D, E, and F, students may be required to complete five additional hours of required courses for a maximum total of 65 hours.

“A baccalaureate degree program must require at least 21 semester hours of upper division courses in the major field and at least 39 semester hours of upper division work overall.”

<table>
<thead>
<tr>
<th>Core Area A-Essential Skills</th>
<th>9 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 Composition I</td>
<td>3 hours</td>
</tr>
<tr>
<td>ENGL 1102 Composition II</td>
<td>3 hours</td>
</tr>
<tr>
<td>MATH 1111 College Algebra</td>
<td>3 hours</td>
</tr>
<tr>
<td>MATH 1113 Pre-calculus (for non-science majors)</td>
<td>3 hours</td>
</tr>
<tr>
<td>MATH 1113 Pre-calculus (for science majors)</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

(Because these are "essential skills," all courses in this area must be completed with a grade of "C" or higher.)

Core Area B-Institutional Options

<table>
<thead>
<tr>
<th>Core Area B-Institutional Options</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRS 1501 African American History</td>
<td>2 hours</td>
</tr>
<tr>
<td>HUMN 1201 Critical Thinking & Communication</td>
<td>3 hours</td>
</tr>
<tr>
<td>(effective Spring 2005)</td>
<td></td>
</tr>
</tbody>
</table>

Core Area C-Humanities/Fine Arts

Select one of the following:
ENGL 2110 World Literature 3 hours
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 2121</td>
<td>British Literature I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2122</td>
<td>British Literature II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2131</td>
<td>American Literature I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2132</td>
<td>American Literature II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2222</td>
<td>African American Literature</td>
<td>3</td>
</tr>
<tr>
<td>RPHS 2101</td>
<td>Introduction to Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>RPHS 2241</td>
<td>Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS 1101</td>
<td>Intro. to Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2521</td>
<td>Intro. to Film Appreciation</td>
<td>3</td>
</tr>
<tr>
<td>HUMN 2011</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 1101</td>
<td>Intro. to Music</td>
<td>3</td>
</tr>
<tr>
<td>THEA 2101</td>
<td>Intro. to Theatre</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Area D - Science, Mathematics and Technology

10 hours

Option I - Non-Science Majors

Select two 3-hour courses from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1104</td>
<td>Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>CISM 1130</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 1130</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ENVS 1140</td>
<td>Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>ISCI 1101</td>
<td>Integrated Science I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1001</td>
<td>Intro. to Astronomy</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one 4-hour course or one 3-hour course and lab from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103</td>
<td>General Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1103L</td>
<td>General Biology I Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 1104</td>
<td>Human Biology II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1104L</td>
<td>Human Biology II Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHEM1101K</td>
<td>Intro. to Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ISCI 1111K</td>
<td>Integrated Science II</td>
<td>4</td>
</tr>
<tr>
<td>PHSC 1011K</td>
<td>Physical Science I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1111K</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Area E - Social Sciences

12 hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 1101</td>
<td>American Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 2401</td>
<td>Global Issues</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 2111</td>
<td>U.S. History to the Post-Civil War Period</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>U.S. History from the Post-Civil War Period- Present</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRS 2000</td>
<td>Intro. to Africana Studies</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 1101</td>
<td>Intro. to Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>Principles of Macro-Economics</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Hours</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>GEOG 1101</td>
<td>Intro. to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>HIST 1111</td>
<td>World Hist. to Early Modern Times</td>
<td>3</td>
</tr>
<tr>
<td>HIST 1112</td>
<td>World Hist. Early Modern Times to Present</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>Intro. to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>Human Growth & Development</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 1101</td>
<td>Intro. to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 1160</td>
<td>Social Problems</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional University Requirements 5 hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRES 1101</td>
<td>Freshman Year Experience I</td>
<td>1</td>
</tr>
<tr>
<td>FRES 1102</td>
<td>Freshman Year Experience II</td>
<td>1</td>
</tr>
<tr>
<td>FRES 1103</td>
<td>Freshman Year Experience (Combined I and II)</td>
<td>2</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEDU 1101</td>
<td>Concepts in Healthful Living</td>
<td>2</td>
</tr>
<tr>
<td>HEDU 1111</td>
<td>Physical Fitness for Life</td>
<td>2</td>
</tr>
<tr>
<td>HEDU 1201</td>
<td>Physical Activity & Stress Mgmt.</td>
<td>2</td>
</tr>
<tr>
<td>HEDU 1211</td>
<td>Physical Activity & Body Comp.</td>
<td>2</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEDU 1301</td>
<td>Weight Training</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1401</td>
<td>Physical Conditioning</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1501</td>
<td>Modern Dance Techniques</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1511</td>
<td>Modern Dance Performance</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1521</td>
<td>Aerobic Dancing</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1601</td>
<td>Swimming I</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1611</td>
<td>Swimming II</td>
<td>1</td>
</tr>
<tr>
<td>HEDU 1621</td>
<td>Aqua Dynamics</td>
<td>1</td>
</tr>
</tbody>
</table>

Area F-Courses Appropriate to the Program of Study 18 hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1211</td>
<td>Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1211L</td>
<td>Principles of Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 2101</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2111</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>ENGT 2101K</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>ENGT 2111K</td>
<td>CAD Applications</td>
<td>1</td>
</tr>
<tr>
<td>ENGT 2201</td>
<td>Technical Writing</td>
<td>2</td>
</tr>
</tbody>
</table>

Upper Division Technology/Engineering Education Core 27 hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEED 1101</td>
<td>The Nature of Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENGT 3101</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MECT 3101K</td>
<td>Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>TEED 2203</td>
<td>Technology & Society</td>
<td>3</td>
</tr>
<tr>
<td>TEED 3104</td>
<td>Technological Research, Experiments</td>
<td>3</td>
</tr>
<tr>
<td>TEED 3203</td>
<td>Information and Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>TEED 3303</td>
<td>Energy, Power, & Transportation</td>
<td>3 hours</td>
</tr>
<tr>
<td>TEED 3803</td>
<td>Media Communication for Technology Education</td>
<td>3 hours</td>
</tr>
<tr>
<td>TEED 4103</td>
<td>Engineering Design for Technology Ed. Capstone</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

=~~~

Technology Education Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 2110</td>
<td>Investigation of Critical/Contemporary Issues</td>
<td>3 hours</td>
</tr>
<tr>
<td>EDUC 2120</td>
<td>Exploring Socio-Culture</td>
<td>3 hours</td>
</tr>
<tr>
<td>EDUC 2130</td>
<td>Exploring Teaching & Learning</td>
<td>3 hours</td>
</tr>
<tr>
<td>EDUC 3030</td>
<td>Exploring-Exceptional Learner</td>
<td>3 hours</td>
</tr>
<tr>
<td>EDUC 3200</td>
<td>Curriculum and Assessment</td>
<td>3 hours</td>
</tr>
<tr>
<td>EDUC4475</td>
<td>Student Teaching & Seminar</td>
<td>12 hours</td>
</tr>
<tr>
<td>TEED 4416</td>
<td>Methods of Teaching Technology & Lab Management</td>
<td>3 hours</td>
</tr>
<tr>
<td>TEED 4417</td>
<td>Teaching Technology Practicum</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

=~~~

Total Hours: 125 hours
Sample Plan of Study
BSED – Technology Education

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>CR</th>
<th>SECOND SEMESTER</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1211/1211L Prin. Of Chemistry I</td>
<td>4</td>
<td>HUMN 1201 Critical Thinking & Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>3</td>
<td>ENGL 1102</td>
<td>3</td>
</tr>
<tr>
<td>FRES 1101 Freshman Experience I</td>
<td>1</td>
<td>FRES 1101 Freshman Experience II</td>
<td>1</td>
</tr>
<tr>
<td>HEDU Elective</td>
<td>1</td>
<td>AFRS 1501 African American History</td>
<td>2</td>
</tr>
<tr>
<td>ISCI 1101 Integrated Science I</td>
<td>3</td>
<td>POLS 1101 American Government</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1113 Pre-Calculus</td>
<td>3</td>
<td>TEED 1103 The Nature of Technology</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL HOURS</td>
<td>15</td>
<td>TOTAL HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>CR</th>
<th>SECOND SEMESTER</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 2110 Investigating Critical/Contemp. Issues</td>
<td>3</td>
<td>CSCI 1130 Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>ENGT 2111K CAD Applications</td>
<td>1</td>
<td>PSYC 1101 Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENGT Technical Writing</td>
<td>2</td>
<td>MATH 2111 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 U.S. History to the Post-Civil War Period</td>
<td>3</td>
<td>EDUC 2130 Exploring Teaching and Learning</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2101 Calculus I</td>
<td>4</td>
<td>RPHS 2101 Introduction to Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1111K Introductory Physics I</td>
<td>4</td>
<td>TOTAL HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>CR</th>
<th>SECOND SEMESTER</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 2120 Exploring Socio-Culture</td>
<td>3</td>
<td>TEED 3303 Energy, Power, & Transportation</td>
<td>3</td>
</tr>
<tr>
<td>ENGT 2101K Computer Graphics</td>
<td>3</td>
<td>EDUC 3030 Exploring-Exceptional Learners</td>
<td>3</td>
</tr>
<tr>
<td>ENGT 3101 Statics</td>
<td>3</td>
<td>TEED 3104 Technological Research & Experiments</td>
<td>3</td>
</tr>
<tr>
<td>HUMN 2011 Humanities</td>
<td>3</td>
<td>MECT 3101K Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>TEED 2203 Technology & Society</td>
<td>3</td>
<td>POLS 2401 Global Issues</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL HOURS</td>
<td>15</td>
<td>TOTAL HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>CR</th>
<th>SECOND SEMESTER</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEED 3203 Information and Communication System</td>
<td>3</td>
<td>EDUC 3200 Curriculum and Assessment (Online Course)</td>
<td>3</td>
</tr>
<tr>
<td>TEED 4103 Engineering Design for Technology Education (Capstone)</td>
<td>3</td>
<td>EDUCC 4475 Teaching Internship</td>
<td>12</td>
</tr>
<tr>
<td>TEED 4416 Methods of Teaching Technology & Lab Management</td>
<td>3</td>
<td>TOTAL HOURS</td>
<td>15</td>
</tr>
<tr>
<td>TEED 4417 Teaching Technology Practicum</td>
<td>3</td>
<td>TOTAL HOURS</td>
<td>15</td>
</tr>
<tr>
<td>TEED3803 Media Communication for Tech. Education</td>
<td>3</td>
<td>TOTAL HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Total hours = 125 hours

(120 + 5 hours University Requirements) = **125 hours**
a. Clearly differentiate which courses are existing and which are newly developed courses. Include the course titles as well as acronyms and credit hour requirements associated with each course.

<table>
<thead>
<tr>
<th>COURSES</th>
<th>TITLE</th>
<th>CREDIT HOURS</th>
<th>EXISTING OR NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRS 1501</td>
<td>African American History</td>
<td>2</td>
<td>Existing</td>
</tr>
<tr>
<td>CHEM 1211</td>
<td>Principles of Chemistry I</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>CHEM 1211L</td>
<td>Principles of Chemistry I (Lab)</td>
<td>1</td>
<td>Existing</td>
</tr>
<tr>
<td>CSCI 1130</td>
<td>Computer Applications</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>Composition I</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>Composition II</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2101K</td>
<td>Computer Graphics</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2111K</td>
<td>CAD Applications</td>
<td>1</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2201</td>
<td>Technical Writing</td>
<td>2</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 3101</td>
<td>Statics</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>FRES 1101</td>
<td>Freshman Experience I</td>
<td>1</td>
<td>Existing</td>
</tr>
<tr>
<td>FRES 1102</td>
<td>Freshman Experience II</td>
<td>1</td>
<td>Existing</td>
</tr>
<tr>
<td>HEDU (Electives)</td>
<td>University Requirements</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>HIST 2111</td>
<td>U.S. History to the Post-Civil War Period</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>HUMN 1201</td>
<td>Critical Thinking & Communication</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>HUMN 2011</td>
<td>Humanities</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>ISCI 1101</td>
<td>Integrated Science I</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>MATH 1113</td>
<td>Pre-Calculus</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>MATH 2101</td>
<td>Calculus I</td>
<td>4</td>
<td>Existing</td>
</tr>
<tr>
<td>MATH 2111</td>
<td>Calculus II</td>
<td>4</td>
<td>Existing</td>
</tr>
<tr>
<td>MECT 3101K</td>
<td>Engineering Materials</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>PHYS 1111K</td>
<td>Introductory Physics I</td>
<td>4</td>
<td>Existing</td>
</tr>
<tr>
<td>POLS 1101</td>
<td>American Government</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>POLS 2401</td>
<td>Global Issues</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>Behavioral Sciences</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>RPHS 2101</td>
<td>Introduction to Philosophy</td>
<td>3</td>
<td>Existing</td>
</tr>
<tr>
<td>EDUC 2110</td>
<td>Investigation of Critical/Contemporary Issues</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 2120</td>
<td>Exploring Socio-Culture</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 2130</td>
<td>Exploring Teaching & Learning</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 3030</td>
<td>Exploring-Exceptional Learner</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 3200</td>
<td>Curriculum and Assessment</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 4475</td>
<td>Student Teaching & Seminar</td>
<td>12</td>
<td>New</td>
</tr>
<tr>
<td>TEED 1103</td>
<td>The Nature of Technology</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 3104</td>
<td>Technological Research & Experiments</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 2203</td>
<td>Technology and Society</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 3203</td>
<td>Information and Communication Systems</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 3303</td>
<td>Energy, Power, & Transportation</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 3803</td>
<td>Media Communication for Technology Education</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 4103</td>
<td>Engineering Design for Technology Ed. Capstone</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 4416</td>
<td>Methods of Teaching Technology & Lab Management</td>
<td>3</td>
<td>New</td>
</tr>
<tr>
<td>TEED 4417</td>
<td>Teaching Technology Practicum</td>
<td>3</td>
<td>New</td>
</tr>
</tbody>
</table>

Total Credit Hours: 125
b. Append course descriptions for all courses (existing and new courses).

(See Appendix A)

c. When describing required or elective courses, list all course prerequisites.

(See Appendix A)

d. Provide documentation that all courses in the proposed curriculum have met all institutional requirements for approval.

The proposed new degree curriculum with new and existing courses have been reviewed and discussed at various institutional levels and has been approved for submission to the Board of Regents. Additionally, the new advisory committee for education; composed of faculty, administrators, P-12 principals, and other community leaders was integral to the development of the proposed new degree and supports the proposed new degree’s curriculum. Finally, the proposed new degree curriculum has the full support and approval of the Vice President for Academic Affairs and the University President. Copies of meeting agendas and minutes are in appendix.

(See Appendix D)

e. Append materials available from national accrediting agencies or professional organizations as they relate to curriculum standards for the proposed program.

The BSED in Technology Education will be reviewed by the Georgia Professional Standards Commission and accredited by the National Council for the Accreditation of Teacher Education. In addition to aligning the six NCATE standards and the Georgia Professional Standards, the proposed degree program aligns with the content area standards of the International Technology Education Association/Council on Technology Teacher Education.

(See Appendix B)

f. Indicate ways in which the proposed program is consistent with national standards. All components of the proposed programs must be consistent with both state and national standards.

Program goals, objectives and student learning outcomes are consistent and based upon the standards set forth by the ITEA/CTTE/NCATE accreditation standards (NCATE, 2005). All courses have stated goals and objectives that are listed on the course syllabus.

All courses in the new program are designed to meet the professional ITEA/CTTE, NCATE, and state standards identified in Appendix B. The Professional Standards Commission has adapted the Professional Standards for the Accreditation of Schools, Colleges, and Departments of Education published by NCATE for use in the Georgia professional education unit and preparation program approval process.

(See Appendix B)
g. If internships or field experiences are required as part of the program, provide information documenting internship availability as well as how students will be assigned and supervised.

Candidates will be required to observe and work with 6-12 school students and teachers throughout the teacher education program with field experiences and student teaching internship. The field experiences for this proposed program will allow the teacher candidate to apply content and theory. Teacher candidates will observe, practice and implement effective teaching strategies for 6-12 students. As a part of their field work, candidates will reflect on their experiences through electronic portfolios and other work samples. Cooperating teachers, DOTE supervisors, and teacher candidates will evaluate their performances in assigned field experiences and internship. In addition, teacher candidates will be observed and evaluated by supervisors and faculty in each of the methods courses.

The Department of Teacher Education will appoint a Field Experience Coordinator to monitor all students’ field experiences. Educational leaders in the service areas have agreed to partner with the DOTE and provide master teachers where students can complete required field experiences and internships.

h. Indicate the adequacy of core offerings to support the new program.

The current frequency of offerings for courses in the core of this proposed curriculum is adequate for the anticipated enrollment in this program. Currently there are several sections of core courses to support the new program. These courses are offered multiple times every year in Engineering Technology, Natural Sciences and Mathematics, and Liberal Arts. Initially, it is anticipated that only one or two sections of the core courses will be required for new program students.

6. Admissions criteria. Please include required minimal scores on appropriate standardized tests and grade point average requirements.

Freshman Applicant/Regular Admission:

Acceptance to the University is determined on the basis of a Freshman Index, which is calculated by using a numerical formula (See Freshmen Index below). The required Freshmen Index for Fall 2002 is 1940. The high school curriculum, ACT or SAT scores, and the high school college preparation grade point average are used to determine admissions. Applicants must be a graduate of an accredited high school (regional accrediting association or a public school regulated by a school system and state department of education) with a diploma (a certificate of attendance is not acceptable). The University requires the students' final high school transcripts before they are allowed to attend classes. Applicants graduating from high school less than 5 years or earlier, must complete requirements of the College Preparatory Curriculum (CPC) of the Board of Regents (see College Preparatory Curriculum).
Regular Admissions Requirements:
 - Freshman Index of 1940
 - SAT Critical Reading score of 430 SAT Math score of 400
 - Or ACT English 17, ACT Math 17, and ACT Composite 17
 - 2.2 GPA
 - 16 CPC Units

Admissions Procedures:
 - Application form. Applicants seeking admission must file an application for admission prior to the specified deadline as indicated in the academic calendar. An application may be obtained from the Office of Admissions or on-line at http://www.savannahstate.edu/em/admissions/apply.htm.
 - Certificate of immunization. All applicants must submit a University System of Georgia Certificate of Immunization as a condition of enrollment. This form must be on file before registration.
 - Application fee. A non-refundable processing fee of $20.00 is required with all applications.
 - Official transcript(s) of courses completed. All documents must be on file in the Office of Admissions prior to the specified document deadline. Freshmen applicants should request their high school guidance department to send an official copy of their transcript. Non-traditional adult candidates must submit an official high school transcript and official college transcript(s), if applicable. Transfer candidates with fewer than 45 transferable quarter hours, or 30 transferable semester hours (students in this category must have completed two college level English courses and one college level math course) should submit official transcripts from their high schools and from all colleges previously attended.
 - Copies of test scores. The Scholastic Aptitude Test (SAT I) or The American College Testing Program (ACT) tests are required for all freshmen applicants and transfer students not meeting transfer requirements. Transfer candidates who have attempted fewer than 45 transferable core quarter hours or 30 transferable semester hours must also submit SAT I or ACT scores and submit an official copy of their high school transcript.
 - Other requirements. The University may require applicants to appear for a personal interview and to take any achievement, aptitude, and psychological tests it deems appropriate in order to make a decision regarding the qualification for admission to the University. Once admitted, all students are required to take a Writing Assessment. Some students may also be required to take placement tests in English, reading, and/or mathematics.
The Department of Teacher Education Admission:

During the first three semesters, students interested in Secondary Education should take EDUC 2110 – Investigating Critical/Contemporary Issues in Education, EDUC 2120 – Exploring Socio-Cultural Diversity, and EDUC 2130 - Exploring Teaching & Learning. Students should also fill as many General Education requirements as possible. PSYC 1101 is a prerequisite for the Secondary Education Program and will also count as a Social Science in Core Area E requirements.

Secondary Education majors are available in the following areas of teacher certification: Biology, Mathematics, and Technology Education. A specific list of subject matter requirements for each teaching certification in Secondary Education grades 6-12 is available from the Department of Teacher Education. All prospective Secondary Education students should apply to the Department of Teacher Education during the semester that they attain 42 credits.

Applicants must have a minimum cumulative G.P.A. of 2.7, as well as a G.P.A. of 2.7 in education and the area of certification. A test of academic skills prior to admission is required. Candidates admitted into initial preparation programs at the post baccalaureate level have attained appropriate depth and breadth in both general and content studies, with a minimum of a bachelor’s degree from a GPSC accepted accredited institution.

7. Availability of assistantships (if applicable).
 (Not Applicable)

8. Student learning outcomes and other associated outcomes of the proposed program.

Teacher candidates who graduate from the proposed program will develop the knowledge, skills and dispositions to teach in grades 6-12. In order to achieve this goal, the program will focus on the following outcomes that coincide with the National and Professional Standards for professionals in the field. General Student learning outcomes from the Georgia Professional Standards Commission are:

- **Identification and education of children with special needs**
 Candidates in all teaching fields must complete three or more semester hours, or the equivalent, in the identification and education of children who have special educational needs.

- **Use, application, and integration of instructional technology**
 Candidates have demonstrated proficiency in the use, application, and integration of instructional technology, either by attaining an acceptable score on a PSC-approved test of computer skill competency or by completing a PSC-approved training course or equivalent.

- **Georgia P-12 curriculum**
 Candidates are prepared to implement the appropriate sections of any Georgia mandated curriculum (e.g. Georgia Performance Standards, GPS, Quality Core Curriculum, QCC) in each relevant content area.
Professional ethical standards and requirements for certification and employment

Candidates are provided with information about professional ethical standards, criminal background check, and clearance for certification and employment.

(See Appendix B for ITEA/CTTE Technology Education candidate/student outcomes)

9. Administration of the program:
 a. Indicate where the program will be housed within the academic units of the institution.
 b. Describe the administration of the program inclusive of coordination and responsibility.

The program will be housed in the College of Sciences and Technology’s (COST) new Department of Teacher Education. The college currently is comprised of three departments. The new Department will be led by a director who reports directly to the Vice President for Academic Affairs. The director of the Department of Teacher Education is the unit head and is responsible for the academic management of the department. The director’s major responsibility is to ensure that all programs in the department are managed in accordance to college, university, state, and national standards. An Assessment Coordinator will manage the unit’s Assessment System to track all outcome performance data. A Field and Clinical Experiences Coordinator will be assigned to advise students and monitor field, clinical/internship experiences. Additionally, there will be a methods faculty assigned. Other faculty responsibilities will be managed by faculty part-time to the DOTE but full-time to the content area in another university department. Oversight for this and all programs in the department is ultimately the responsibility of the Director of the Department of Teacher Education. The chart that follows, illustrates the department’s organization with all proposed programs represented.

The Department of Teacher Education
Organizational Chart
10. Waiver to Degree-Credit Hour (if applicable): If the program exceeds the maximum credit hour requirement at a specific degree level, then provide an explanation supporting the increase in hours (Note: The maximum for bachelor’s degrees is 120-semester credit hours and the maximum for master’s degrees is 36-semester credit hours).

None

11. Accreditation: Describe disciplinary accreditation requirements associated with the program (if applicable).

The program is required to be accredited by National Council for the Accreditation of Teacher Education (NCATE) and to be nationally recognized by its specialized professional association SPA.

The Georgia Professional Standards Commission has adapted the Professional Standards for the Accreditation of Schools, Colleges, and Departments of Education published by the National Council for the Accreditation of Teacher Education (NCATE) for use in the Georgia professional education unit and preparation program approval process. The adapted standards include all six of the NCATE standards, as well as two additional standards that address Georgia-specific requirements. The adapted standards, the Georgia Standards for the Approval of Professional Education Units and Preparation Programs (effective 09/1/08) apply to all professional education units and preparation programs in Georgia.

In addition to the GaPSC and NCATE standards, the program must meet all standards to be recognized nationally by the International Technology Education Association/Council of Technology Teacher Educators. The ITEA/CTTE is the national (SPA) for technology education teachers.

12. Projected enrollment for the program especially during the first three years of implementation. Please indicate whether enrollments will be cohort-based.

Projected Enrollment for the Program

It is projected that approximately 15 to 20 students will initially enroll in the program. As the program develops and grows, it is anticipated that an average of 15-25 students will continue to enroll and participate as the program becomes known.

<table>
<thead>
<tr>
<th>ENROLLMENT PROJECTIONS</th>
<th>First Year FY 2012</th>
<th>Second Year FY 2013</th>
<th>Third Year FY 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Existing</td>
<td>0</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Attrition (Retention Rate = .75)</td>
<td>0</td>
<td>-4</td>
<td>-8</td>
</tr>
<tr>
<td>Total Majors</td>
<td>15</td>
<td>31</td>
<td>53</td>
</tr>
</tbody>
</table>

The enrollment projections are not cohort-based.
These projections are based on survey results which indicate that approximately 20 students will enter the program in the first two years of the program, and informal surveys of current students show that at least 15 currently-enrolled students desire to transfer in the program. As such, the projection of 20 new students per year is conservative.

13. Faculty

a. Provide an inventory of faculty directly involved with the administration of the program. For each faculty member, provide the following information:

(See Appendix C - Table for Faculty Directly Involved with Program)

Total Number of Faculty: 1- FTE first two years; an additional faculty will be requested for year three; see Enrollment Projections Narrative.

b. If it will be necessary to add faculty in order to begin the program, give the desired qualifications of the persons to be added, with a timetable for adding new faculty and plan for funding new positions.

<table>
<thead>
<tr>
<th>Faculty Title</th>
<th>Qualifications</th>
<th>Timetable</th>
<th>Plan for Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Professor Technology Education (6-12) Methods</td>
<td>Terminal degree (Ed.D. or Ph.D.) in the content area (Technology Education) from an accredited institution. (Tenure-Tracked position)</td>
<td>One new faculty first two years. Third year of implementation, we will request an additional full-time faculty.</td>
<td>Funds from reallocation of existing positions, increased university enrollment resources, and from program generated funds.</td>
</tr>
</tbody>
</table>

14. Fiscal, Facilities, Enrollment Impact, and Estimated Budget

Provide a narrative that explains how current institutional resources will be expended specifically for this program. Provide a narrative that explains how the institution will fiscally support the establishment of the new program through the redirection of existing resources and acquisition of new resources. Indicate whether the institution will submit a request for new funds as part of its budget request. The narrative also needs to explain the basis of the institution’s projections with regard to anticipated EFT, head count, student enrollment, estimated expenditures, and projected revenues.

The proposed bachelor degree program will be implemented combining existing resources, resources developed from budget redirection, and from funds due to the increased student enrollment at Savannah State University. During the third and fourth year, the program becomes more self-supporting and will reduce the need for special university funding. The following narratives explain anticipated EFT, head count, student enrollment, estimated expenditures, and projected revenues.
I. ENROLLMENT PROJECTIONS NARRATIVE YEAR 1

15 new students will enroll in Freshman Courses

Course Sections Satisfying Program Requirements
2 NEW courses are needed each semester
1 Sections of EACH COURSE is needed each semester (15 students per section)
4 Sections will be offered in Year 1

Credit Hours Generated by Those Courses
15 Students taking 4 courses per year =60 headcount/15 students/ courses =4
60x3 credit/hours = 90 credit/hours

II. EXPENDITURES
4 Course Sections in Year 1
Faculty load =12

Reassigned Position –
(One Existing Faculty @ $50,000) 50% of Time = $25,000 + $7,750 Fringe benefits (31%) = $32,750

New Faculty
One full-time faculty @ $45,000 (average faculty salary) =$45,000
Administrator (Director) = $25,334
Assessment Coordinator = $13,334
Administrative Assistant = $8,334
Fringe benefits calculated at 31% x ($45,000 +$25,334 +$13,334 + 8,334) = $28,521
Total Personnel Expenditures: $120,523.00

Start-up Costs (one-time expenses)
Library Resources (CMC in the Library) = $6667
Assessment System (One Time Fee) = $5,000
(NCATE Visit Fee) = $1,350
Total Start-up Cost = $13,017.00

Operating Costs (recurring costs -base budget)
Supplies/Expenses: $3000 +$1264 (NCATE/AACTE Annual Fee) = $4264
Travel: for one faculty to attend NCATE/AACTE Conference = $1,500
Total Recurring Costs=$7,764

GRAND TOTAL COSTS: = $174,054.00

III. REVENUE SOURCES
Reallocation of existing funds (One Existing Faculty @ $50,000) 50% of Time = $25,000 + Fringe
Benefits $7750) = $32,750

New Tuition:
15 students taking 4 courses per year =60 headcount
60 x 3 credit/hours = 180 credit/hours
180 credit/hours x $130 /semester ($260) =$ 46,800

Student Fees
$102 Student Institutional Fees + $50 Technology Fee = $152
15 students take course each semester = 30 fees of $152 =$4660.00
Other (Funds from new enrollment increases for the University) = $89,844

GRAND TOTAL REVENUES: $174,054.00
I. ENROLLMENT PROJECTIONS NARRATIVE - YEAR 2

11 - Students will return after Year 1 (current SSU retention rate .75) (15 x .75 = 11.25)
20 – New students will enroll in Freshman Courses

Course Sections Satisfying Program Requirements
4 Sections of Existing Courses will be offered in Year 2

Credit Hours Generated by Those Courses
31 students taking 4 courses per year =124 headcount
124x3 credit/hours = 372 credit/hours

II. EXPENDITURES
4 Course Sections in Year 2

Reassigned Position –
(One Existing Faculty @ $50,000) 50% of Time = $25,000 + $7,750 Fringe benefits (31%) = $32,750

New Faculty
One full-time faculty @ $45,000 (average faculty salary) =$45,000
Administrator (Director) = $25,334
Assessment Coordinator = $13,334
Administrative Assistant = $8,334
Fringe benefits calculated at 31% x ($45,000 +$25,334 +$13,334 + 8,334) = $28,521
Total Personnel Expenditures: $120,523.00

Start-up Costs (one-time expenses)
Library Resources (CMC in the Library) = 0
Assessment System (One Time Fee) = 0
(NCATE Visit Fee) = 0
Total Start-up Cost = 0

Operating Costs (recurring costs -base budget)
Supplies/Expenses: $3000 +$1264 (NCATE/AACTE Annual Fee) = $4264
Travel: for one faculty to attend NCATE/AACTE Conference = $1,500
Total Recurring Costs=$7,764

GRAND TOTAL COSTS: = $161,037.00

III. REVENUE SOURCES

Reallocation of existing funds (One Existing Faculty @ $50,000) 50% of Time = $25,000 + Fringe
Benefits $7750) = $32,750.00

New Tuition:
31 students taking 4 courses per year =124 headcount
124 x 3 credit/hours = 372 credit/hours
372 credit/hours x $130 /semester ($260) =$96,720

Student Fees
$102 Student Institutional Fees + $50 Technology Fee = $152
31 students take course each semester = 62 fees of $152 = $9,424

Other (Funds from new enrollment increases for the University) = $22,143.00

GRAND TOTAL REVENUES: $161,037.00
I. ENROLLMENT PROJECTIONS NARRATIVE - YEAR 3
23 Students will return after Year 2 (current SSU retention rate .75) (31 x .75 = 23.25)
20 new students will enroll in Freshman Courses
43 Students are projected
43 students x 4 classes = 172 headcount

Credit Hours Generated by Courses
43 students taking 4 courses per year = 172 headcount
172 x 3 credit/hours = 516 credit/hours

II. EXPENDITURES
4 Course Sections in Year 3
Faculty load = 12

Reassigned Position –
(One Existing Faculty @ $50,000) 50% of Time = $25,000 + $7,750 Fringe benefits (31%) = $32,750

New Faculty
One full-time faculty @ $45,000 (average faculty salary) =$45,000
Request one (1) new full-time faculty position = $45,000
Administrator (Director) = $25,334
Assessment Coordinator = $13,334
Administrative Assistant = $8,334
Fringe benefits calculated at 31% x ($45,000 + $45,000 + $25,334 + $13,334 + $8,334) = $42,471
Total Personnel Expenditures: $179,473.00

Start-up Costs (one-time expenses)
Library Resources (CMC in the Library) = 0
Assessment System (One Time Fee) = 0
(NCATE Visit Fee) = 0
Total Start-up Cost = 0

Operating Costs (recurring costs -base budget)
Supplies/Expenses: $3000 + $1264 (NCATE/AACTE Annual Fee) = $4264
Travel: for one faculty to attend NCATE/AACTE Conference = $1,500
Total Recurring Costs = $7,764

GRAND TOTAL COSTS: = $219,987.00

III. REVENUE SOURCES

Reallocation of existing funds (One Existing Faculty @ $50,000) 50% of Time = $25,000 + Fringe Benefits $7750) = $32,750.00

New Tuition:
43 students taking 4 courses per year = 172 headcount
172 x 3 credit/hours = credit/hours
516 credit/hours x $130/semester ($260) =$ 134,160.00
Student Fees
$102 Student Institutional Fees + $50 Technology Fee = $152
43 students take course each semester = 86 fees of $152 = $13,072

Other (Funds from new enrollment increases for the University) = $40,005.00

GRAND TOTAL REVENUES: $219,987.00
I. ENROLLMENT PROJECTIONS NARRATIVE - YEAR 4

32 Students will return after Year 2 (current SSU retention rate .75) (31 x .75 = 23.25)
20 New students will enroll in Freshman Courses
52 Students are projected

Course Sections Satisfying Program Requirements
52 Students x 4 classes=208 headcount

Credit Hours Generated by Those Courses
52 Students taking 4 courses per year = 208 headcount
208 x3 credit/hours = 624 credit/hours
Degrees Awarded (45% of Returning Students --32 x .45) = 14

II. EXPENDITURES

Reassigned Position –
(One Existing Faculty @ $50,000) 50% of Time = $25,000 + $7,750 Fringe benefits (31%) = $32,750

New Faculty
One full-time faculty @ $45,000 (average faculty salary) =$45,000
Request one (1) new full-time faculty position = $45,000
Administrator (Director) = $25,334
Assessment Coordinator =$13,334
Administrative Assistant = $ 8,334
Fringe benefits calculated at 31% x ($45,000 +$45,000 +$25,334 +$13,334 + 8,334) = $ 42471
Total Personnel Expenditures: $179,473.00

Start-up Costs (one-time expenses)
Library Resources (CMC in the Library) = 0
Assessment System (One Time Fee) = 0
(NCATE Visit Fee) = 0
Total Start-up Cost = 0

Operating Costs (recurring costs -base budget)
Supplies/Expenses: $3000 +$1264 (NCATE/AACTE Annual Fee) = $4264
Travel: for one faculty to attend NCATE/AACTE Conference = $1,500
Total Recurring Costs=$7,764

GRAND TOTAL COSTS: = $219,987.00

III. REVENUE SOURCES

Reallocation of existing funds (One Existing Faculty @ $50,000) 50% of Time = $25,000 + Fringe
Benefits $7750) = $32,750.00

New Tuition:
52 students taking 4 courses per year = 208headcount
208 x 3 credit/hours = 624credit/hours
624 credit/hours x $130 /semester ($260) = $162,240.00
Student Fees
$102 Student Institutional Fees + $50 Technology Fee = $152
52 students take course each semester = 104 fees of $152 = $15,808
Other (Funds from new enrollment increases for the University) = $9,189.00

GRAND TOTAL REVENUES: $219,987.00
I. ENROLLMENT PROJECTIONS

Student Majors

- **Shifted from other programs**
 - New to the institution: 15, 20, 20, 20
 - Continuing Majors: 0, 15, 31, 43
 - Attrition: 0, -4, -8, -11
- **Transfers**
 - Total Majors: 15, 31, 43, 52

Course Sections Satisfying Program Requirements

- **Previously existing**
 - 0, 4, 8, 12
- **New**
 - 4, 4, 4, 4
- **Total Program Course Sections**
 - 4, 8, 12, 16

Credit Hours Generated by Those Courses

- **Existing enrollments**
 - 0, 88, 828, 1536
- **New enrollments**
 - 90, 160, 720, 960
- **Total Credit Hours**
 - 90, 744, 1548, 2496

DEGREES AWARDED (Graduation Rate= 35%)

- 0, 0, 10, 14

II. EXPENDITURES

Personnel – reassigned or existing positions

<table>
<thead>
<tr>
<th></th>
<th>First Year FY</th>
<th>Second Year FY</th>
<th>Third Year FY</th>
<th>Fourth Year FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty (One Existing Faculty @ $50,000) 50% of Time = $25,000</td>
<td>$25,000.00</td>
<td>25,000.00</td>
<td>$25,000.00</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>Part-time Faculty</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Administrators</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Support Staff</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>7,750.00</td>
<td>0</td>
<td>7,750.00</td>
<td>7,750.00</td>
</tr>
<tr>
<td>Other Personnel Costs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Existing Personnel Costs</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
</tr>
</tbody>
</table>

Personnel – new positions

<table>
<thead>
<tr>
<th></th>
<th>First Year FY</th>
<th>Second Year FY</th>
<th>Third Year FY</th>
<th>Fourth Year FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty (Average Full-time Faculty Salary= $45,000)</td>
<td>$45,000.00</td>
<td>45,000.00</td>
<td>$90,000.00</td>
<td>$90,000.00</td>
</tr>
<tr>
<td>Part-time Faculty</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Administrators</td>
<td>25,334.00</td>
<td>25,334.00</td>
<td>25,334.00</td>
<td>25,334.00</td>
</tr>
<tr>
<td>Support Staff</td>
<td>8,334.00</td>
<td>8,334.00</td>
<td>8,334.00</td>
<td>8,334.00</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>28,521.00</td>
<td>28,521.00</td>
<td>42,471.00</td>
<td>42,471.00</td>
</tr>
<tr>
<td>Other personnel costs (Assessment Coordinator)</td>
<td>13,334.00</td>
<td>13,334.00</td>
<td>13,334.00</td>
<td>13,334.00</td>
</tr>
<tr>
<td>Total New Personnel Costs</td>
<td>$120,523.00</td>
<td>$120,523.00</td>
<td>$179,473.00</td>
<td>$179,473.00</td>
</tr>
</tbody>
</table>

EXPENDITURES (Continued)

Start-up Costs (one-time expenses)

<table>
<thead>
<tr>
<th></th>
<th>First Year FY</th>
<th>Second Year FY</th>
<th>Third Year FY</th>
<th>Fourth Year FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library/learning resources</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>Cost 1</td>
<td>Cost 2</td>
<td>Cost 3</td>
<td>Cost 4</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Other (NCATE Program Evaluation Visit Fee)</td>
<td>1350.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Assessment Software</td>
<td>5000.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Media/Print Resources to establish a Curriculum Media Center (CMC) in the Library</td>
<td>6667.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Physical Facilities: construction or major renovation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total One-time Costs</td>
<td>$13,017.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Operating Costs (recurring costs – base budget)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies/Expenses</td>
<td>4,264.00</td>
<td>4264</td>
<td>4264</td>
<td>4264</td>
</tr>
<tr>
<td>Travel</td>
<td>1,500.00</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Equipment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Library/learning resources</td>
<td>2000.00</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Recurring Costs</td>
<td>$7,764.00</td>
<td>$7,764.00</td>
<td>$7,764.00</td>
<td>$7,764.00</td>
</tr>
<tr>
<td>GRAND TOTAL COSTS</td>
<td>$174,054.00</td>
<td>$161,037.00</td>
<td>$219,987.00</td>
<td>$219,987.00</td>
</tr>
</tbody>
</table>

III. REVENUE SOURCES

<table>
<thead>
<tr>
<th>Source of Funds</th>
<th>Cost 1</th>
<th>Cost 2</th>
<th>Cost 3</th>
<th>Cost 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reallocations of existing funds (One Existing Faculty @ $50,000) 50% of Time = $25,000 + Fringe Benefits $7750)</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
<td>$32,750.00</td>
</tr>
<tr>
<td>New student workload</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New Tuition (See narrative note)</td>
<td>$46,800.00</td>
<td>$96,720.00</td>
<td>$134,160.00</td>
<td>$162,240.00</td>
</tr>
<tr>
<td>Federal funds</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other grants</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Student fees (Institutional Fee $102.00 + Technology Fee $50) = $152.00</td>
<td>4,660.00</td>
<td>9,424.00</td>
<td>13,072.00</td>
<td>15808.00</td>
</tr>
<tr>
<td>Other (Funds from new enrollment increases)</td>
<td>89,844.00</td>
<td>22,143.00</td>
<td>40,005.00</td>
<td>9,189.00</td>
</tr>
<tr>
<td>New state allocation requested for budget hearing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nature of Funds</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Base budget</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>One-time funds</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRAND TOTAL REVENUES</td>
<td>$174,054.00</td>
<td>$161,037.00</td>
<td>$219,987.00</td>
<td>$219,987.00</td>
</tr>
</tbody>
</table>
Facilities Information for New Academic Programs

Proposed Location for the Program: College of Sciences and Technology

Floor area required for the program (gross and net square feet): 1350 square feet; 1050 s.f. for one classroom, 300 s.f. for two faculty offices.

Type of spaces required:

- Number of classrooms: 1
- Number of labs: 0 (Use Existing Labs)
- Number of offices: 2
- Other spaces:

Place an “X” beside the appropriate selection:

- Existing facility will be used as is (area square footage):

- Existing facility will require modification (area square footage):

 Projected renovation cost:
 Estimated relocation cost:
 Total funding required:
 Source of Funding:

- Construction of new facilities will be required (area square footage):

 Estimated construction cost:
 Estimated total project cost:
 Proposed source of funding:

List any infrastructure impacts that the program will have (i.e., parking, power, HVAC, etc.) and indicated estimated cost and source of funding.

Other comments:

Note: A system office Facilities Project Manager (through the Office of Facilities) may contact you with further questions separate from the review of the new academic program.
Appendixes

Appendix A: Course Description and Prerequisites
Appendix B: Accreditation Standards
Appendix C: Table of Faculty Directly Involved with Program
Appendix D: Endorsement Documents
Appendix A: Course Descriptions

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Course Description</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
<th>Existing or New</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRS 1501</td>
<td>African American History</td>
<td>A survey and understanding of the cultural, economic, political, psychological and social development of African Americans and an analysis of their contemporary status.</td>
<td>2</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>CHEM 1211</td>
<td>Principles of Chemistry I</td>
<td>First course in a two-semester sequence covering the fundamental principles and applications of chemistry. This course covers composition of matter, stoichiometry, periodic relations, and nomenclature.</td>
<td>3</td>
<td>Prerequisite: All students are required to take a Chemistry Placement Test</td>
<td>Existing</td>
</tr>
<tr>
<td>CHEM 1211L</td>
<td>Principles of Chemistry I (Lab)</td>
<td>Laboratory exercises to supplement the lecture material of CHEM 1211.</td>
<td>1</td>
<td>Prerequisite or Corequisite: CHEM 1211</td>
<td>Existing</td>
</tr>
<tr>
<td>CSCI 1130</td>
<td>Computer Applications</td>
<td>An introductory course specially designed to help students become computer literate. The course covers the history of computers, hardware, software, and use of the state-of-the-art technology. Another unique feature of this course is that students use Internet, MS OFFICE applications using word processing, spreadsheets, and HTML language to create home pages</td>
<td>3</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>EDUC 2110</td>
<td>Investigating Critical/Contemporary Issues</td>
<td>Observations and analyses of critical educational issues influencing the social and political contexts of educational settings in Georgia and the United States. Students examine the teaching profession, the meaning of education and schooling in a diverse culture, and the moral and ethical responsibilities of teaching.</td>
<td>3</td>
<td></td>
<td>New</td>
</tr>
<tr>
<td>EDUC 2120</td>
<td>Exploring Socio-Culture</td>
<td>This course introduces teachers to fundamental knowledge of culture essential for effective teaching in increasingly diverse classrooms. Designed as a foundation course for subsequent courses focused on the preparation of culturally responsive teachers, this course examines 1) the nature and function of culture; 2) the</td>
<td>3</td>
<td></td>
<td>New</td>
</tr>
</tbody>
</table>
development of individual and group cultural identity; 3) definition and implications of diversity. Includes 15 hours of observation and participation in an appropriate school setting—elementary/early childhood, middle grades, secondary or P-12 environments. Verification of professional liability insurance and a criminal background check are required prior to receiving a school placement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Prerequisite</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 2130</td>
<td>Exploring Teaching & Learning</td>
<td>This course explores key aspects of learning and teaching through examining your own learning processes and those of others, with the goal of applying your knowledge to enhance the learning of all students in a variety of educational settings and contexts. Includes 10 hours of observation and interaction with a learner in a naturalistic setting. Current use of technology will be integrated as communication and instructional tools. Verification of professional liability insurance is required.</td>
<td>3</td>
<td>Prerequisite: EDUC 2110</td>
<td>New</td>
</tr>
<tr>
<td>EDUC 3030</td>
<td>Exploring-Exceptional Learner</td>
<td>Prepares candidates to work collaboratively with families and school personnel to have a positive impact on the educational, social and behavioral development of all students, including those with a full range of disabilities, in a diverse society. The course focuses on knowledge of legislative mandates for serving exceptional students, characteristics of exceptionality, best practice in facilitating teaching and learning, and accountability through assessment of outcomes. This course requires an observational experience in an assigned school placement. Verification of professional liability insurance is required prior to placement in the field experience. Fulfills Georgia HB 671 requirement.</td>
<td>3</td>
<td>Prerequisite: Admission to Teacher Education</td>
<td>New</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>EDUC 3200</td>
<td>Curriculum and Assessment</td>
<td>An introduction to constructing, evaluating, and interpreting tests; descriptive and inferential statistics; state competency testing; and guidelines for state program evaluations.</td>
<td>3</td>
<td>Prerequisite: Admission to Teacher Education</td>
<td>New</td>
</tr>
<tr>
<td>EDUC4475</td>
<td>Student Teaching/Internship</td>
<td>Full-time teaching experience in mathematics under the supervision of a public school cooperating teacher and a specialist in mathematics education. Includes a regularly scheduled seminar. Proof of professional liability insurance is required prior to receiving a school placement.</td>
<td>12</td>
<td>Prerequisite: Admitted to Teacher Education; TEED 4416/4417</td>
<td>New</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>Composition I</td>
<td>A course designed to develop college-level reading and writing skills. Focuses on vocabulary, analysis of readings, grammar, mechanics, and the steps of the writing process. Introduces documented research and various patterns of organization and development. Minimum passing grade is "C."</td>
<td>3</td>
<td>Prerequisites: Regular admission or exit from ENGL 0099 or ENG 098 and READ 0099 or RDG 098</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>Composition II</td>
<td>A course designed to further develop college-level reading and writing skills. Includes analysis of literary texts and specialized application of the research and writing skills learned in ENGL 1101. Minimum passing grade is "C."</td>
<td>3</td>
<td>Prerequisite: ENGL 1101</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2101K</td>
<td>Computer Graphics</td>
<td>An introduction to computer graphics hardware and software with emphasis on hands-on experience using one or more CAD systems.</td>
<td>3</td>
<td>Prerequisite: MATH 1113</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2111K</td>
<td>CAD Applications</td>
<td>Covers architectural, chemical, civil, electronics and mechanical CAD applications.</td>
<td>1</td>
<td>Prerequisite: ENGT 2101K</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 2201</td>
<td>Technical Writing</td>
<td>Covers fundamentals of writing technical reports and research papers; illustrating technical data; making oral presentations; and participating in group communications.</td>
<td>2</td>
<td>Prerequisite: ENGL 1102</td>
<td>Existing</td>
</tr>
<tr>
<td>ENGT 3101</td>
<td>Statics</td>
<td>A study of applied engineering mechanics of rigid bodies in equilibrium. Analysis of forces, reactions and moments in various force systems for both two and three dimensional systems.</td>
<td>3</td>
<td>Prerequisites: MATH 2101; PHYS 1111K or PHYS 2211K</td>
<td>Existing</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credits</td>
<td>Requirement</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>FRES (Elective)</td>
<td>Freshman Experience</td>
<td>University Requirement</td>
<td>2</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>HEDU (Elective)</td>
<td>Health and Fitness</td>
<td>University Requirement</td>
<td>3</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>HIST 2111</td>
<td>U.S. History to the Post-Civil War Period</td>
<td>An introductory survey of the formative years of the history of the United States.</td>
<td>3</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>HUMN 1201</td>
<td>Critical Thinking & Communication</td>
<td>This course is designed to assist in the development of skills in critical reading, critical thinking, and interpersonal communication in the context of contemporary issues. This course focuses not only on improving reading comprehension and analytical skills, but also on identifying problems with logic found in one's own communication and in that of others, on developing an awareness of techniques commonly used in advertising and political language, on understanding principles of interpersonal communication and public speaking, and on organizing, developing, and presenting audience-centered material.</td>
<td>3</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>HUMN 2011</td>
<td>Humanities</td>
<td>Designed as a multicultural, cross-disciplinary course to enable students to discover, interpret, and assess critically the intellectual and aesthetic expressions of cultures of America, Europe, Asia, and Africa.</td>
<td>3</td>
<td>Prerequisite: ENGL 1102 or ENG 109</td>
<td>Existing</td>
</tr>
<tr>
<td>ISCI 1101</td>
<td>Integrated Science I</td>
<td>Nature, physical properties, structure and evolution of the physical universe, nuclear energy and the atom, cosmology, the nature of energy and its conservation.</td>
<td>3</td>
<td></td>
<td>New</td>
</tr>
<tr>
<td>MATH 1113</td>
<td>Pre-Calculus</td>
<td>A course designed to prepare students for a successful study of calculus. Topics include functions and their graphs, inverse functions, exponential and logarithmic functions,</td>
<td>3</td>
<td>Prerequisite: MATH 1111 or a minimum score of 475 on the SAT-MAT</td>
<td>Existing</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Description</td>
<td>Credits</td>
<td>Prerequisite</td>
<td>Status</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>MATH 2101</td>
<td>Calculus I</td>
<td>An integrated approach to differential calculus and an introduction to integral calculus. Topics include functions, graphs, the derivative, applications of the derivative, maxima and minima, velocity and acceleration, rates of change, antidifferentiation, the fundamental theorem of calculus, and basic integration techniques.</td>
<td>4</td>
<td>MATH 1113</td>
<td>Existing</td>
</tr>
<tr>
<td>MATH 2111</td>
<td>Calculus II</td>
<td>A continuation of MATH 2101. Topics include logarithmic, exponential, and other transcendental functions, applications of integration, integration techniques. L'Hopital's rule, improper integrals, and infinite series.</td>
<td>4</td>
<td>MATH 2101</td>
<td></td>
</tr>
<tr>
<td>MECT 3101K</td>
<td>Engineering Materials</td>
<td>An overview of structures, properties, and applications of metals, polymers, ceramics, and composites commonly used in industry. Problem-solving skills are developed in the areas of materials selection, evaluation, measurement, and testing.</td>
<td>3</td>
<td>CHEM 1211, 1211L</td>
<td>Existing</td>
</tr>
<tr>
<td>PHYS 1111K</td>
<td>Introductory Physics I</td>
<td>An introductory course, which includes material from mechanics, thermodynamics, and waves. Elementary algebra and trigonometry are examined.</td>
<td>4</td>
<td>MATH 1113</td>
<td>Existing</td>
</tr>
<tr>
<td>POLS 1101</td>
<td>American Government</td>
<td>A comprehensive study of the origins, principles, structures, processes, and practices of American government, emphasis on various perspectives on democratic theory and practice of governmental institutions.</td>
<td>3</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>POLS 2401</td>
<td>Global Issues</td>
<td>An interdisciplinary approach to selected topics in contemporary societies, using the sociological, economic, geographic, and cultural perspectives.</td>
<td>3</td>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credits</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>Behavioral Sciences</td>
<td>This introductory survey course explores the scientific study of human nature, behavior, and cognitive processes. The major areas of psychological study will be reviewed including history, biology, memory, learning, development, personality, abnormal and social psychology. Emphasis will be placed on applying psychological principles and data to life experiences.</td>
<td>3</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>RPHS 2101</td>
<td>Introduction to Philosophy</td>
<td>The basic survey course of the field of philosophy. An introduction to logic, ethics, ontology, and religion, etc., as a basis for additional study in philosophy. Required for minors.</td>
<td>3</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>TEED 1103</td>
<td>The Nature of Technology & Society with Lab</td>
<td>A foundational study of the close relationship between nature, emerging technologies, and technological literacy throughout history. This will be one of the first courses that incoming students complete. As such, it will provide the students with a baseline for the discipline.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 2203</td>
<td>Technology and Society</td>
<td>An examination of the complex relationships between society, values, and technological development in developed and under-developed nations. This course will meet several NCATE standards and expose the student to technology in a new light.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 3104</td>
<td>Technological Research, Exp., & Trouble-shooting</td>
<td>A study of foundational concepts in engineering & design, including the analysis and use of technology problem solving tools like research and development; experimentation; and, trouble-shooting. This course will provide students with an analysis and teaching tool that can be used throughout the course.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credits</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>TEED 3203</td>
<td>Information and Communication Systems</td>
<td>This course will provide the student with conceptual foundations and methodologies for teaching information and communications technology at the secondary level.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 3303</td>
<td>Energy Power and Transportation</td>
<td>This course will provide the student with conceptual foundations and methodologies for teaching energy, power, and transportation technologies at the secondary level.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 3803</td>
<td>Media Communication for Technology Education</td>
<td>This course will provide the student with conceptual foundations and methodologies for production of digital media to enhance teaching and learning in technology education classes at the secondary level.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 4103</td>
<td>Engineering Design for Technology Education</td>
<td>This course will include an analysis of engineering design, a focus on the design processes, opportunities for physical and computer modeling, and materials processing. This course will provide the student with a technical capstone for the concentration area.</td>
<td>3</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>TEED 4416</td>
<td>Methods of Teaching Technology & Lab Management</td>
<td>An examination and application of curricular issues, learning theories, teaching strategies, instructional materials, laboratory management, safety, and assessment procedures for teaching secondary school technology education in the multicultural and diverse classroom of today. Includes a secondary school field experience in mathematics teaching and seminars. Emphasizes those practices suggested by research in mathematics education and encouraged by the ITEA and CTTE. Proof of professional liability insurance is required prior to receiving a school placement.</td>
<td>3</td>
<td>Prerequisite: EDUC 2130, MATH 3495, TEED 3475 and admission to Teacher Education. New</td>
<td></td>
</tr>
<tr>
<td>TEED 4417</td>
<td>Teaching Technology Practicum</td>
<td>Practicum component of TEED 4416</td>
<td>3</td>
<td>Taking concurrently with TEED 4416 New</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Accreditation Standards

GEORGIA STANDARDS FOR THE APPROVAL OF PROFESSIONAL EDUCATION UNITS AND EDUCATOR PREPARATION PROGRAMS
(Effective 9/1/08)

The Professional Standards Commission has adapted the Professional Standards for the Accreditation of Schools, Colleges, and Departments of Education published by the National Council for the Accreditation of Teacher Education (NCATE) for use in the Georgia professional education unit and preparation program approval process. The adapted standards include all six of the NCATE standards, as well as two additional standards that address Georgia-specific requirements. The adapted standards, the Georgia Standards for the Approval of Professional Education Units and Preparation Programs (Effective 09/1/08) apply to all professional education units and preparation programs in Georgia.

I. CANDIDATE PERFORMANCE

Standard 1: Candidate Knowledge, Skills, and Dispositions
Candidates preparing to work in schools as teachers or other school professionals know and demonstrate the content knowledge, pedagogical content knowledge and skills, pedagogical and professional knowledge and skills and professional dispositions necessary to help all students learn. Assessments indicate that candidates meet professional, state, and institution/agency standards.

Standard 2: Assessment System and Unit Evaluation
The professional education unit has an assessment system that collects and analyzes data on applicant qualifications, candidate and graduate performance, and professional education unit operations to evaluate and improve the performance of candidates, the professional education unit and its preparation programs.

II. PROFESSIONAL EDUCATION UNIT CAPACITY

Standard 3: Field Experiences and Clinical Practice
The professional education unit and its school partners design, implement, and evaluate field experiences and clinical practice so that teacher candidates and other school professionals develop and demonstrate the knowledge, skills, and professional dispositions necessary to help all students learn.

Standard 4: Diversity
The professional education unit designs, implements, and evaluates curriculum and provides experiences for candidates to acquire and demonstrate the knowledge, skills, and professional dispositions necessary to help all students learn. Assessments indicate that candidates can demonstrate and apply proficiencies related to diversity. Experiences provided for candidates
include working with diverse populations, including higher education and P-12 school faculty, candidates, and students in P-12 schools.

Standard 5: Faculty Qualifications, Performance, and Development
Faculty are qualified and model best professional practices in scholarship, service, and teaching, including the assessment of their own effectiveness as related to candidate performance; they also collaborate with colleagues in the disciplines and schools. The professional education unit systematically evaluates faculty performance and facilitates professional development.

Standard 6: Professional Education Unit Governance and Resources
The professional education unit has the leadership, authority, budget, personnel, facilities, and resources, including information technology resources, for the preparation of candidates to meet professional, state, and institution/agency standards.

III. GEORGIA SPECIFIC REQUIREMENTS FOR PROFESSIONAL EDUCATION UNITS AND PREPARATION PROGRAMS

Standard 7: Requirements and Standards Specified in Rule 505-3-.01
The professional education unit ensures that all preparation programs meet all applicable requirements of Rule 505-3-.01, REQUIREMENTS AND STANDARDS FOR APPROVING PROFESSIONAL EDUCATION UNITS AND EDUCATOR PREPARATION PROGRAMS, Education Personnel Preparation Rules and Procedures.

Elements of Standard 7

7a. ADMISSIONS REQUIREMENTS
Candidates admitted to initial preparation programs at the baccalaureate level have a minimum grade point average of 2.5 on a 4.0 scale. Candidates admitted into initial preparation programs at the post baccalaureate level have attained appropriate depth and breadth in both general and content studies, with a minimum of a bachelor’s degree from a PSC accepted accredited institution. (A 2.5 is not required for entry into a post baccalaureate program.)

7b. READING METHODS
Candidates in programs in Early Childhood, Middle Grades, and the special education fields of General Curriculum, Adapted Curriculum, and General Curriculum/Early Childhood Education (P-5) are required to demonstrate competence in the knowledge of methods of teaching reading.

7c. IDENTIFICATION AND EDUCATION OF CHILDREN WITH SPECIAL NEEDS
Candidates in all teaching fields, the field of educational leadership, and/or the service fields of Media Specialist and School Counseling have completed five or more quarter hours or three or more semester hours, or the equivalent, in the identification and education of children who have special educational needs or equivalent, through a Georgia-approved professional learning program.
7d. USE, APPLICATION, AND INTEGRATION OF INSTRUCTIONAL TECHNOLOGY
Candidates have demonstrated proficiency in computer and other technology application and
skills and satisfactory proficiency in integrating instructional technology into student learning.
This requirement may be met through content embedded in courses and experiences throughout
the preparation program or by attaining an acceptable score on a PSC-approved computer skill
competency assessment.

7e. GEORGIA P-12 CURRICULUM
Candidates are prepared to implement the appropriate sections of any Georgia mandated
curriculum (e.g. Georgia Performance Standards, GPS) in each relevant content area.

7f. PROFESSIONAL ETHICAL STANDARDS AND REQUIREMENTS FOR
CERTIFICATION AND EMPLOYMENT
Candidates are provided with information about professional ethical standards, the Georgia Code
of Ethics for Educators, criminal background check, and clearance for certification and
employment.

Georgia Standards for the Approval Professional Education Units Page 32 of 33 and Educator
Preparation Programs (Effective 9/1/08)

International Technology Education Association (ITEA)
Council on Technology Teacher Education (CTTE)

===
The CTTE Accreditation Committee has developed an NCATE approval process to review technology teacher education program state licensure guidelines standards. When a state request to have its licensure guidelines reviewed by NCATE and CTTE, the following process is followed.

1. The state contacts the chairperson of the CTTE Accreditation Committee to request review of the state standards or assistance in developing technology teacher education program standards similar to the *ITEA/CTTE/NCATE Standards*

2. The chairperson of the Accreditation Committee forwards the name of a trained program report reviewer in that geographical area of the state to contact.

3. The ITEA/CTTE/NCATE program report reviewer and the state representative then meet to determine needed assistance. For example, state licensure standards may need to be written to be more in-line with *ITEA/CTTE/NCATE Standards*.

4. The ITEA/CTTE/NCATE program report reviewer establishes a three-member committee consisting of two other regional program report reviewers to assist in the development of comparison between the specialty area and state licensure standards.

5. After review of the state licensure standards, the three-member committee may accept, reject, or encourage modifications of the state’s standards. Depending upon the degree of comparison, they may continue to assist in the refinement of the state licensure standards.

6. Future university technology teacher education program reports prepared for state review can now be either approved by the state licensure team or by the normal ITEA/CTTE program report review process, depending upon the exact wording of the NCATE and state agreement.

NCATE State Partnership Frameworks

Although each state partnership may be different, the information in Table 2 will guide institutions as to the type of NCATE State Partnership Framework that has been agreed upon in each state. If you are from an institution in one of these states listed in the first column, you will be using the approved ITEA/CTTE/NCATE standards included in this document to write your program report. If you are from an institution in one of the states listed in the second column, you can either use the approved ITEA/CTTE/NCATE standards in this document, or use the state technology teacher education program standards that are available when writing the program report. If you are from an institution in one of the states listed in the third column, you will be required to write a performance-based program report. Please contact NCATE for more information about state partnerships.
Introduction to the Standards

The ITEA/CTTE/NCATE standards were rewritten by the CTTE Accreditation Committee and submitted to NCATE for approval in October of 2003. The following curriculum standards have been reviewed extensively by the technology teacher education profession over the past several years. The ITEA/CTTE/NCATE standards are a result of several projects including:

2. The 1997 ITEA/CTTE/NCATE guidelines approved by NCATE.

3. The INTASC Standards.

4. The Standards for Technological Literacy, part of International Technology Education Association’s Technology for All Americans Project.

Description of the Standards

Types of Standards

There are ten standards. The ten standards are subdivided into two sets as shown below:

Subject Matter Standards for Technology Education

Standard 1—The Nature of Technology
Standard 2—Technology and Society
Standard 3—Design
Standard 4—Abilities for a Technological World
Standard 5—The Designed World

Effective Teaching Standards for Technology Education

Standard 6—Curriculum
Standard 7—Instructional Strategies
Standard 8—Learning Environment
Standard 9—Students
Standard 10—Professional Growth

Standards 1-5 of this document specifically focus on the subject matter of technology. For more detailed descriptions of standards 1-5, refer to the Standards for Technological Literacy: Content for the Study of Technology (ITEA, 2000). Standards 6-10 identify the knowledge necessary for effective teaching of technology in technology teacher education programs. For more detailed
descriptions of standards 6-10 refer to the *Professional Development Standards* (ITEA 2003). Both of these documents are part of the Technology for All Americans Project.

Programs for the Preparation of Technology Education Teachers

STANDARD 1 — THE NATURE OF TECHNOLOGY

Technology teacher education program candidates develop an understanding of the nature of technology within the context of the *Designed World*.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 1.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
- Explain the characteristics and scope of technology.
- Compare the relationship among technologies and the connections between technology and other disciplines.

Performance Indicators:
- Apply the concepts and principles of technology when teaching technology in the classroom and laboratory.

Disposition Indicators:
- Comprehend the nature of technology in a way that demonstrates sensitivity to the positive and negative aspects of technology in our world.

RUBRIC FOR STANDARD 1-The Nature of Technology

Knowledge Indicators:
- Explain the characteristics and scope of technology.
- Compare the relationship among technologies and the connections between technology and other disciplines.

Performance Indicators:
- Apply the concepts and principles of technology when teaching technology in the classroom and laboratory.
Disposition Indicators:
• Comprehend the nature of technology in a way that demonstrate sensitivity to the positive and negative aspects of technology in our world.

STANDARD 2 — TECHNOLOGY AND SOCIETY

Technology teacher education program candidates develop an understanding of technology and society within the context of the Designed World.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 2.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
• Compare the relationships between technology and social, cultural, political, and economic systems.
• Assess the role of society in the development and use of technology.
• Assess the importance of significant technological innovations on the history of human kind.

Performance Indicators:
• Judge the effects of technology on the environment.
• Evaluate the relationship between technology and social institutions such as family, religion, education, government, and workforce.

Disposition Indicators:
• Demonstrate sensitivity to appropriate and inappropriate uses of technology and its effects on society and the environment.
• Make decisions based on knowledge of intended and unintended effects of technology on society and the environment.
RUBRIC FOR STANDARD 2-Technology and Society

TARGET
Technology teacher education program candidates have in-depth knowledge of the subject matter that they plan to teach as described in the standard and they demonstrate their knowledge through inquiry, critical analysis and evaluation of the subject matter.

ACCEPTABLE
Technology teacher education program candidates know the subject matter that they plan to teach and can explain important principles and concepts delineated in the standard.

UNACCEPTABLE
Technology teacher education program candidates have inadequate knowledge of the subject matter that they plan to teach and are unable to provide examples of important principles or concepts identified as part of the standard.

- Knowledge Indicators:
 - Compare the relationships between technology and social, cultural, political, and economic systems.
 - Assess the role of society in the development and use of technology.
 - Assess the importance of significant technological innovations on the history of human kind.
- Performance Indicators:
 - Judge the effects of technology on the environment.
 - Evaluate the relationship between technology and social institutions such as family, religion, education, government, and workforce.
- Disposition Indicators:
 - Demonstrate sensitivity to appropriate and inappropriate uses of technology and its effects on society and the environment.
 - Make decisions based on knowledge of intended and unintended effects of technology on society and the environment.

STANDARD 3 — DESIGN

Technology teacher education program candidates develop an understanding of design within the context of the *Designed World*.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 3.

The program prepares technology teacher education candidates who can:
Knowledge Indicators:
 - Explain the importance of design in the human-made world.
 - Describe the attributes of design.
• Analyze the engineering design process and principles.

Performance Indicators:
Apply the process of troubleshooting, research and development, invention, innovation, and experimentation in developing solutions to a design problem.

Disposition Indicators:
Investigate the relationship between designing a product and the impact of the product on the environment, economy, and society.

RUBRIC FOR STANDARD 3-Design

TARGET
Technology teacher education program candidates have in-depth knowledge of the subject matter that they plan to teach as described in the standard and they demonstrate their knowledge through inquiry, critical analysis and evaluation of the subject matter.

ACCEPTABLE
Technology teacher education program candidates know the subject matter that they plan to teach and can explain important principles and concepts delineated in the standard.

UNACCEPTABLE
Technology teacher education program candidates have inadequate knowledge of the subject matter that they plan to teach and are unable to provide examples of important principles or concepts identified as part of the standard.

Knowledge Indicators:
• Explain the importance of design in the human-made world.
• Describe the attributes of design.
• Analyze the engineering design process and principles.

Performance Indicators:
Apply the process of troubleshooting, research and development, invention, innovation, and experimentation in developing a solution to a design problem.

Disposition Indicators:
Investigate the relationship between designing a product and the impact of the product on the environment, economy, and society.
STANDARD 4 — ABILITIES FOR A TECHNOLOGICAL WORLD

Technology teacher education program candidates develop abilities for a technological world within the contexts of the *Designed World*.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 4.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
- Select design problems and include appropriate criteria and constraints for each problem.
- Evaluate a design, assessing the success of a design solution, and develop proposals for design improvements.
- Analyze a designed product, and identify the key components of how it works and how it was made.
- Operate and maintain technological products and systems.

Performance Indicators:
- Develop and model a design solution.
- Complete an assessment to evaluate merits of design solution.
- Operate a technological device and/or system.
- Diagnose a malfunctioning system, restore the system, and maintain the system.
- Investigate the impacts of products and systems on individuals, the environment, and society.

Disposition Indicators:
- Assess the impacts of products and systems.
- Follow safe practices and procedures in the use of tools and equipment.
- Judge the relative strengths and weaknesses of a designed product from a consumer perspective.
- Exhibit respect by properly applying tools and equipment to the processes for which they were designed.

Design and use instructional activities that emphasized solving real world open-ended problems.

RUBRIC FOR STANDARD 4-Abilities for a Technological World
TARGET
Technology teacher education program candidates have in-depth knowledge of the subject matter that they plan to teach as described in the standard and they demonstrate their knowledge through inquiry, critical analysis and evaluation of the subject matter.

ACCEPTABLE
Technology teacher education program candidates know the subject matter that they plan to teach and can explain important principles and concepts delineated in the standard.

UNACCEPTABLE
Technology teacher education program candidates have inadequate knowledge of the subject matter that they plan to teach and are unable to provide examples of important principles or concepts identified as part of the standard.

Knowledge Indicators:
- Select design problems and include appropriate criteria and constraints for each problem.
- Evaluate a design, assessing the success of a design solution, and develop proposals for design improvements.
- Analyze a designed product, and identify the key components of how it works and how it was made.
- Operate and maintain technological products and systems.

Performance Indicators:
- Develop and model a design solution.
- Complete an assessment to evaluate merits of design solution.
- Operate a technological device and/or system.
- Diagnose a malfunctioning system, restore the system, and maintain the system.
- Investigate the impacts of products and systems on individuals, the environment, and society.

Disposition Indicators:
- Assess the impacts of products and systems.
- Follow safe practices and procedures in the use of tools and equipment.
- Judge the relative strengths and weaknesses of a designed product from a consumer perspective.
- Exhibit respect by properly applying tools and equipment to the processes for which they were designed.
- Design and use instructional activities that emphasized solving real open-ended problems.
STANDARD 5 — THE DESIGNED WORLD

Technology teacher education program candidates develop an understanding of the *Designed World*.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 5.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
- Analyze the principles of various medical technologies as part of the designed world.
- Analyze the principles of various agricultural and related biotechnologies as part of the designed world.
- Analyze the principles, concepts and applications of energy and power technologies as part of the designed world.
- Analyze the principles, concepts and applications of information and communication technologies as part of the designed world.
- Analyze the principles of various transportation technologies that are part of the designed world.
- Analyze the principles, concepts, and applications of manufacturing technologies as part of the designed world.
- Analyze the principles, concepts, and applications of construction technologies as part of the designed world.

Performance Indicators:
- Select and use appropriate technologies in a variety of contexts including medical, agricultural and related biotechnologies, energy and power applications, information and communications, transportation, manufacturing, and construction.

Disposition Indicators:
- Effectively use and improve technology in a variety of contexts including medical, agricultural and related biotechnologies, energy and power applications, information and communications, transportation, manufacturing, and construction.
RUBRIC FOR STANDARD 5 - The Designed World

TARGET
Technology teacher education program candidates have in-depth knowledge of the subject matter that they plan to teach as described in the standard and they demonstrate their knowledge through inquiry, critical analysis and evaluation of the subject matter.

ACCEPTABLE
Technology teacher education program candidates know the subject matter that they plan to teach and can explain important principles and concepts delineated in the standard.

UNACCEPTABLE
Technology teacher education program candidates have inadequate knowledge of the subject matter that they plan to teach and are unable to provide examples of important principles or concepts identified as part of the standard.

Knowledge Indicators:
- Analyze the principles of various medical technologies as part of the designed world.
- Analyze the principles of various agricultural and related biotechnologies as part of the designed world.
- Analyze the principles, concepts and applications of energy and power technologies as part of the designed world.
- Analyze the principles, concepts and applications of information and communication technologies as part of the designed world.
- Analyze the principles of various transportation technologies that are part of the designed world.
- Analyze the principles, concepts, and applications of manufacturing technologies as part of the designed world.
- Analyze the principles, concepts, and applications of construction technologies as part of the designed world.

Performance Indicators:
Select and use appropriate technologies in a variety of contexts including medical, agricultural and related biotechnologies, energy and power applications, information and communications, transportation, manufacturing, and construction.

Disposition Indicators:
Effectively use and improve technology in a variety of contexts including medical, agricultural and related biotechnologies, energy and power applications, information and communications, transportation, manufacturing, and construction.
STANDARD 6 — CURRICULUM

Technology teacher education program candidates design, implement, and evaluate curricula based upon Standards for Technological Literacy.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 6.

The program prepares technology teacher education candidates who can:
Knowledge Indicators:
- Identify appropriate content for the study of technology at different grade levels.
- Integrate technological curriculum content from other fields of study.
- Identify curriculum and instructional materials and resources that enable effective delivery when teaching about technology.

Performance Indicators:
- Engage in long-term planning that results in an articulated curriculum based on Standards for Technological Literacy for grades K-12 or equivalent.
- Design technology curricula and programs that integrate content from other fields of study.
- Improve the technology curriculum by making informed decisions using multiple sources of information.
- Incorporate up-to-date technological developments into the technology curriculum.
- Implement a technology curriculum that systemically expands the technological capabilities of the student.

Disposition Indicators:
Demonstrate sensitivity to cultural, ethnic diversity, special needs, interest, abilities, and gender issues when selecting, designing, or evaluating curriculum and instructional materials.

RUBRIC FOR STANDARD 6-Curriculum

Knowledge Indicators:
- Identify appropriate content for the study of technology at different grade levels.
- Integrate technological content from other fields of study.
- Identify curriculum and instructional materials that enable effective delivery when teaching about technology.
Performance Indicators:
- Engage in long-term planning that results in an articulated curriculum based on Standards for Technological Literacy for grades K-12 or equivalent.
- Design technology curricula and programs that integrate content from other fields of study.
- Improve the technology curriculum by making informed decisions using multiple sources of information.
- Incorporate up-to-date technological developments into the technology curriculum.
- Implement a technology curriculum that systemically expands the technological capabilities of the student.

Disposition Indicators:
Demonstrate sensitivity to cultural and ethnic diversity and gender issues when selecting, developing, and evaluating curriculum and instructional materials.

TARGET
Technology teacher education program candidates demonstrate a thorough understanding of effective teaching content identified in the standard in a way that allows them to provide multiple explanations and effective teaching decisions to maximize student learning of the subject matter standard.

ACCEPTABLE
Technology teacher education program candidates have a broad knowledge of effective teaching content as identified in the standard that can incorporate the subject matter content in a way that helps them develop quality-learning experiences for all students.

UNACCEPTABLE
Technology teacher education program candidates do not understand the relationship of content and effective teaching identified in the standard in a way that helps them develop learning experiences that integrates all the areas of technological subject matter.

STANDARD 7 — INSTRUCTIONAL STRATEGIES

Technology teacher education program candidates use a variety of effective teaching practices that enhance and extend learning of technology.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 7.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
• Base instruction on contemporary teaching strategies that are consistent with Standards for Technological Literacy.
• Apply principles of learning and consideration of student diversity to the delivery of instruction.
• Compare a variety of instructional strategies to maximize student learning about technology.
• Describe a variety of student assessments appropriate for different instructional materials.

Performance Indicators:
• Apply appropriate instructional technology materials, tools, equipment, and processes to enhance student learning about technology instruction.
• Assess instructional strategies to improve teaching and learning in the technology classroom by using self-reflection, student learning outcomes, and other assessment techniques.

Disposition Indicators:
Exhibit an enthusiasm for teaching technology by creating meaningful and challenging technology learning experiences that lead to positive student attitudes toward the study of technology.

RUBRIC FOR STANDARD 7-Instructional Strategies

TARGET
Technology teacher education program candidates demonstrate a thorough understanding of effective teaching content identified in the standard in a way that allows them to provide multiple explanations and effective teaching decisions to maximize student learning of the subject matter standard.

ACCEPTABLE
Technology teacher education program candidates have a broad knowledge of effective teaching content as identified in the standard that can incorporate the subject matter content in a way that helps them develop quality-learning experiences for all students.

UNACCEPTABLE
Technology teacher education program candidates do not understand the relationship of content and effective teaching identified in the standard in a way that helps them develop learning experiences that integrates all the areas of technological subject matter.

Knowledge Indicators:
• Base instruction on contemporary teaching strategies that is consistent with Standards for Technological Literacy.
• Apply principles of learning and consideration of student diversity to the delivery of instruction.
• Compare a variety of instructional strategies to maximize student learning about technology.
• Describe a variety of student assessments appropriate for different instructional materials.

Performance Indicators:
• Apply appropriate materials, tools, equipment, and processes to enhance student learning about technology.
• Assess instructional strategies to improve teaching and learning in the technology classroom by using self-reflection, student learning outcomes, and other assessment techniques.

Disposition Indicators:
• Exhibit an enthusiasm for teaching technology by creating meaningful and challenging technology learning experiences that lead to positive student attitudes toward the study of technology.

STANDARD 8—LEARNING ENVIRONMENTS

Technology teacher education program candidates design, create, and manage learning environments that promote technological literacy.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 8.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
• Recognize rich learning environments that provide for varied educational experiences in the technology classroom and laboratory.
• Identify learning environments that encourage, motivate, and support student learning, innovation, design, and risk taking.

Performance Indicators:
• Design learning environments that establish student behavioral expectations that support an effective teaching and learning environment.
• Create flexible learning environments that are adaptable for the future.
Disposition Indicators:
Exhibit safe technology laboratory practice by designing, managing, and maintaining physically safe technology learning environments.

RUBRIC FOR STANDARD 8-Learning Environments

TARGET
Technology teacher education program candidates demonstrate a thorough understanding of effective teaching content identified in the standard in a way that allows them to provide multiple explanations and effective teaching decisions to maximize student learning of the subject matter standard.

ACCEPTABLE
Technology teacher education program candidates have a broad knowledge of effective teaching content as identified in the standard that can incorporate the subject matter content in a way that helps them develop quality-learning experiences for all students.

UNACCEPTABLE
Technology teacher education program candidates do not understand the relationship of content and effective teaching identified in the standard in a way that helps them develop learning experiences that integrates all the areas of technological subject matter.

Knowledge Indicators:
- Recognize rich learning environment that provide for varied educational experiences in the technology classroom and laboratory.
- Identify learning environments that encourage, motivate, and support student learning, innovation, design, and risk taking.

Performance Indicators:
- Design learning environments that establish student behavioral expectations that support an effective teaching and learning environment.
- Create flexible learning environments that are adaptable for the future.

Disposition Indicators:
Exhibit safe technology laboratory practice by designing, managing, and maintaining physically safe technology learning environments.
STANDARD 9 — STUDENTS

Technology teacher education program candidates understand students as learners, and how commonality and diversity affect learning.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 9.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
- Design technology experiences for students of different ethnic, socioeconomic backgrounds, gender, age, interest, and exceptionalities.
- Identify how students learn technology most effectively by integrating current research about hands-on learning and learning about the content of technology.

Performance Indicators:
Create technology experiences for students with different abilities, interests, and ages about the content of technology.

Disposition Indicators:
Develop productive relationships with students so that they become active learners about technology and enhance their human growth and development.

RUBRIC FOR STANDARD 9-Students

TARGET
Technology teacher education program candidates demonstrate a thorough understanding of effective teaching content identified in the standard in a way that allows them to provide multiple explanations and effective teaching decisions to maximize student learning of the subject matter standard.

ACCEPTABLE
Technology teacher education program candidates have a broad knowledge of effective teaching content as identified in the standard that can incorporate the subject matter content in a way that helps them develop quality-learning experiences for all students.

UNACCEPTABLE
Technology teacher education program candidates do not understand the relationship of content and effective teaching identified in the standard in a way that helps them develop learning experiences that integrates all the areas of technological subject matter.
Knowledge Indicators:
- Design technology experiences for students of different ethnic, socioeconomic backgrounds, gender, and exceptionalities.
- Identify how students learn technology most effectively by integrating current research about hands-on learning and learning about the content of technology.

Performance Indicators:
Create technology experiences for students with different abilities, interests, and ages about the content of technology.

Disposition Indicators:
Develop productive relationships with students so that they become active learners about technology.

STANDARD 10 — PROFESSIONAL GROWTH

Technology teacher education program candidates understand and value the importance of engaging in comprehensive and sustained professional growth to improve the teaching of technology.

INDICATORS:
The following knowledge, performance, and disposition indicators provide guidance to better understand the scope of Standard 10.

The program prepares technology teacher education candidates who can:

Knowledge Indicators:
- Demonstrate a continuously updated and informed knowledge base about the processes of technology.
- Continuously build upon effective instructional practices that promote technological literacy.

Performance Indicators:
- Apply various marketing principles and concepts to promote technology education and the study of technology.
- Collaborate with other candidates and professional colleagues to promote professional growth and professional development activities.
- Become actively involved in professional organizations and attend professional development activities to become better prepared to teach technology education.
• Develop a professional development plan for self-improvement in curriculum and instruction in technology education.

Disposition Indicators:
• Value continuous professional growth through involvement in a variety of professional development activities.
• Demonstrate the importance of professionalism by promoting technology organizations for students in the technology classroom.
• Reflect upon their teaching to improve and enhance student learning.

RUBRIC FOR STANDARD 10-Professional Growth

TARGET
Technology teacher education program candidates demonstrate a thorough understanding of effective teaching content identified in the standard in a way that allows them to provide multiple explanations and effective teaching decisions to maximize student learning of the subject matter standard.

ACCEPTABLE
Technology teacher education program candidates have a broad knowledge of effective teaching content as identified in the standard that can incorporate the subject matter content in a way that helps them develop quality-learning experiences for all students.

UNACCEPTABLE
Technology teacher education program candidates do not understand the relationship of content and effective teaching identified in the standard in a way that helps them develop learning experiences that integrates all the areas of technological subject matter.

Knowledge Indicators:
• Demonstrate a continuously updated and informed knowledge base about the processes of technology.
• Continuously build upon effective instructional practices that promote technological literacy.

Performance Indicators:
• Apply various marketing principles and concepts to promote technology education and the study of technology.
• Collaborate with other candidates and professional colleagues to promote professional growth and professional development activities.
- Become actively involved in professional organizations and attend professional development activities to become better prepared to teach technology education.
- Develop a professional development plan for self-improvement in curriculum and instruction in technology education.

Disposition Indicators:
- Value continuous professional growth through involvement in a variety of professional development activities.
- Demonstrate the importance of professionalism by promoting technology organizations for students in the technology classroom.
- Reflect upon their teaching to improve and enhance student learning.
Appendix C: Faculty Directly Involved With the New Degree Program

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Rank</th>
<th>Highest Degree</th>
<th>Degrees Earned</th>
<th>Academic Discipline</th>
<th>Current Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Lambright</td>
<td>Associate Professor</td>
<td>Ph.D. of Philosophy Mechanical Engineering</td>
<td>B.S. Mechanical Engineering, M.S. Mechanical Engineering</td>
<td>Civil/Mechanical Engineering</td>
<td>12 hours</td>
</tr>
<tr>
<td>Asad Yousuf</td>
<td>Professor</td>
<td>EdD. Occupational Studies</td>
<td>B.S. Electronics Engineering M.S. Electrical Engineering</td>
<td>Electronics Engineering Technology</td>
<td>12 hours</td>
</tr>
<tr>
<td>Hetty B. Jones</td>
<td>Professor</td>
<td>Ph.D. Zoology</td>
<td>B.S. Biology, Secondary Education M. Ed. Math and Science</td>
<td>General Biology</td>
<td>12 hours</td>
</tr>
<tr>
<td>Johnny Johnson</td>
<td>Assistant Professor</td>
<td>Ph.D. of Philosophy Physiology & Biophysics Plan</td>
<td>B.S. Biology</td>
<td>Biology</td>
<td>12 hours</td>
</tr>
<tr>
<td>Sujin Kim</td>
<td>Assistant Professor</td>
<td>Ph.D. Applied Mathematics</td>
<td>B.S. Mathematics M.S. Mathematics</td>
<td>Mathematics</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

Current faculty load and recently tenured faculty reduces the need for any increase in workload for existing faculty and will allow for additional required and elective courses to be offered in the new degree program. As the program grows in the next several years, it is anticipated that the need will arise for additional part-time and full-time faculty.

Expected responsibilities in the program: Existing full-time tenured and tenure-track faculty will provide instructions in the core content for the program. All current faculty members are qualified to teach related content except teaching methods and education foundation courses required of the major.
Appendix D: Endorsement Documents
March 26, 2010

Dr. Earl G. Yarbrough, Sr., President
Savannah State University
3219 College Street
Hill Hall, Office of the President
Savannah, GA 31404

Dear President Yarbrough:

It is with great humility that I write this letter in support of establishing a Teacher Education Program at Savannah State University. As a former teacher educator, I have a full appreciation for the teaching profession. The opportunity to join forces with other institutions in the University System of Georgia to prepare teachers will play a major role in creating a more educated Georgia. This I consider a privilege. There continues to be a need for a talented teacher workforce prepared to educate our children. I view teaching as the most important profession of all. As a major force in preparing teachers, Savannah State University will make a greater impact on the Savannah-Chatham County area. These teachers will add value to the lives of the students they touch. It is crucial that our teachers are prepared with the skills, attitudes and knowledge desired to prepare our children to be society ready and able to compete with the great minds in our global, technological and ever-changing world.

I support this initiative and will work diligently to provide and seek the resources necessary to offer a quality program that is NCATE accredited and PSC approved. The approval of Teacher Education at Savannah State University will do much to aid in meeting the teaching needs in Georgia and it will open up the door for increased career opportunities for our students. Contact me if I can be of further assistance. Thank you.

Sincerely,

Mary C. Wyatt, P.D., CFCS
Vice President for Academic Affairs
March 12, 2010

Dr. Mary Wyatt
Vice President for Academic Affairs
Savannah State University
Savannah, GA 31404

Dear Dr. Wyatt:

The Executive Committee of The Faculty Senate wishes to express its full support of the proposed degree programs in education in the areas of Technology, English and History. It is our conviction that the proposed degree program is long overdue. The degree program will close the gap between the minority student and minority teacher ratio in the Savannah Chatham County School System, as well as surrounding areas in the low country of Southeastern Georgia, including Effingham County and coastal South Carolina.

The Executive Committee of the Faculty Senate enjoins the Savannah State University National Alumni Association, Faculty, Staff and Students in bringing this innovative curriculum based educational program to fruition. This will allow Savannah State University to play a pivotal role and to have a significant impact in adhering to the Chancellor’s initiative of an educated Georgia.

I implore your support in the endorsement of this cutting edge program. We, along with the university and community look forward to the implementation of this instructional strategy with great anticipation.

[Signature]

Vice Chair
Parliamentarian
March 12, 2010

Dr. Mary C. Wyatt
Vice President for Academic Affairs
Savannah State University
3219 College Street
Suite 221
Box 30411
Savannah, Georgia 31404

Dear Dr. Wyatt:

The opportunity for Savannah State University to propose and hopefully implement a Teacher Education Program is not only fortuitous for the university but for the immediate City of Savannah and State of Georgia. It also addresses the larger national issue of the dearth of teachers, especially minority teachers. Never has the need for teachers who are fully prepared to deliver integrative instruction, which addresses the multifaceted issues of a global, technological world and changing social paradigms, been so critical. The attainment of post secondary education by more of the nation’s citizens will, in my view, be more transformative than any other single initiative in addressing societal ills. I am strongly supportive of this effort.

The recent passage by Chatham County of the Educational Local Option Sales Tax (ELST) with ongoing implementation is producing the construction of new schools and redrawing school district lines to accommodate an increase in the school age population in the county. This excellent opportunity must be met by concomitant educational initiatives to assure that a high quality education will be available. Savannah State is to be commended for preparing the proposal to provide Teacher Preparation. It augurs well for our community and beyond.

As an alumnus of Savannah State University’s (College) teacher education program, I developed a lifelong appreciation for the value a teacher adds to the strong growth and development of youth. To this day I believe teaching to be a noble profession. I not only support Savannah State University’s proposal for Teacher Preparation, I support it unequivocally and urge its approval.

Sincerely,

Annette K. Brock, Ph.D.
Professor Emeritus
Savannah State University
March 12, 2010

Dr. Mary C. Wyatt, Ph.D.
Vice President for Academic Affairs
Savannah State University
3219 College Street, Suite 221
Savannah, GA 31404

RE: Savannah State University Teacher Education Program Proposal

Dear Dr. Wyatt:

On behalf of the Savannah-Chatham County Public School System (SCCPSS), I wish to express my full support for Savannah State University’s (SSU) proposal for the Teacher Education Program. The Teacher Education Program will enable SSU to train students through innovative and alternative methods. This program will recruit and develop pipeline programs and inform students of the benefits and opportunities for professional advancement through teaching careers.

The Teacher Education Program will develop enrichment and teaching pedagogy training for its students in order to develop and strengthen their teaching competencies, including hands-on, in-the-classroom teaching experiences. This program will also provide immediate teaching employment for qualified BA/BS graduates.

We are excited about this program which will directly meet our needs and will provide incentives and support for more SCCPSS students.

We hope the Teacher Education Program proposal will meet with your favorable consideration. If you have any questions, please do not hesitate to contact me.

Thank you.

Sincerely,

Thomas B. Lockamy, Jr., Ed.D.
Superintendent of Schools

TBL/cw

Mission - To ignite a passion for learning and teaching at high levels
Vision - From school to the world. ALL students prepared for productive futures
An Equal Opportunity Employer
Virginia A. Edwards
15 Purple Marlin Lane
Savannah, Georgia 31419
virgilinedwards@msn.com
(912) 925-0068

March 12, 2010

Dr. Mary C. Wyatt, Ph.D., CFCS
Vice President for Academic Affairs
Savannah State University
3219 College Street
Suite 121
Box 20411
Savannah, Georgia 31404

Dear Dr. Wyatt:

It is my very great pleasure to offer this letter in support of the reinstatement of the Teacher Education Program at Savannah State University. As a former teacher, school administrator, district director of middle and high schools and superintendent of schools, I observed and experienced situations that clearly indicate the need to restore the school of teacher education at Savannah State University. I believe Savannah State can resume its historical place in this community as one of the premier schools for teacher preparation and in particular serve as a definitive road map to increasing a well qualified core of minority teachers.

I strongly recommend the restoration of the program as well as the necessary funding to ensure full implementation and programmatic sustenance. The approval of this request is critical given the current demand to provide qualified teachers to serve the children in school districts across the nation.

I fully support without reservation your efforts to restore with full funding the Teacher Education Program at Savannah State University.

Respectfully yours,

Virginia A. Edwards
March 10, 2010

Dr. Mary C. Wyatt, Ph.D., CFCS
Vice President for Academic Affairs
Savannah State University
3219 College Street, Suite 221, Box 20411
Savannah, GA 31404

Dear Dr. Wyatt

American education is this nation’s greatest strength and most powerful force for advancing the common good. A major challenge in transforming our educational system lies in erasing disparities in educational attainment among low-income students and underrepresented minorities. Just 26 percent of African Americans, 18 percent of Latino and Hispanic Americans, and 24 percent of Native Americans and Pacific Islanders have at least an associate degree. To compete in a demanding, global, knowledge-based economy, and to succeed we must provide educational training beyond high school and associate degree to a significantly greater proportion of Americans than ever before. This demand increases the need for teachers. The National Center for Educational Statistics predicted the need for public school teachers needed by 2008-2009 ranges from 1.7 million to 2.7 million.

The need for teachers in Georgia is well documented, and is addressed by several USG initiatives, most notably, the 20,000 by 2020 Initiative to meet 80% of the state’s need for K-12 teachers by the year 2020. Savannah State University is strongly committed to achieving the 20,000 by 2020 Initiative. On behalf of the College of Liberal Arts and Social Sciences, I am pleased to write in support of the proposed Teacher Education Program at Savannah State University. This proposed program will meet national, state and local needs to increase the number of qualified teachers in the state of Georgia and beyond.

Sincerely,

Jane McBride Gates, Ph.D.
Dean and Professor
Meeting Agendas and Minutes
Agenda

New Programs and Curriculum Committee
March 25, 2010

Call Meeting to Order

Review minutes from March 11, 2010

Request for new agenda items

Teacher Education Program

COST
1. Bachelor of Science in Marine Science (program change)
2. Bachelor of Environmental Science (program change)
3. Introduction to Genomics (new course)
4. Molecular Evolution (new course)
5. FYE: Freshman Year Experience (new course)
6. Forensic Science class (new course)

CLASS
1. Master of Social Work (GRE) (program change)
2. Master of Urban Studies and Planning (program change)
3. Bachelor of Social Work (program change)
4. Addition of Language in Area C (program change)
5. Bachelor of Arts in English (major/minor) (program change)
6. The Bible as Literature (course change)
7. Philosophy and Psychology of Love (course change)
8. Forensic Photography (new course)
9. Master of Arts in Mass Communications (new degree program)
10. Master of Science in Community Policing Administration (new degree program)

Announcements and comments

Adjourn
Thursday, February 18, 2010 at 10:00 am
Hill Hall, Seminar Room

Dr. Elazer Barnette - Presenter

In attendance: Dr. Mary Wyatt, Dr. Larry Stokes, Dr. Yonpae Park, Dr. Dorothy Gardner-Martin, Mrs. Hope Cranford, Dr. Asad Yousuf, Dr. Virginia Edwards, Dr. Cecil Jones, Ms. Lauren Kirkland, Ms. Bernadette Ball-Oliver, Dr. Jane Gates, Dr. Mostafa Sarhan, Ms. Gloria Dukes

Handouts given:
- Student Survey Form
- University System of Georgia Baccalaureate and Master’s Degree Procedures: Criteria and Procedures for New Programs

Proposed Bachelor of Science in Education Degree Requirements (handouts):
- Biology
- Mathematics
- English
- Technology Education
- Family and Consumer Science
- Business Education

- Introduction and biographical information given by Dr. Elazer Barnette, who has a background in Technology Education;
- Brief introduction and background information given by attendees;
- Board of Regents will not allow a degree program to be brought on board if it is being offered at a nearby institution;
- Six degree tracks were chosen based on programs being offered at other local institutions, programs that would be successful and programs that would be approved by the BOR based on areas of need;
- Presentation entitled: Planning Proposal for New Baccalaureate Degree in Education presented by Dr. Barnette (see copy of slides)
- Student Survey Form passed out to all attendees; purpose of the form is to survey students to see how many would change their major or be interested in an education program if it was available at Savannah State?
- Regional demographics are needed to determine the need for the selected degree programs. For example, if SSU graduates ten (10) Technology Education majors, how many can be placed in the surrounding area due to a need for Technology Education teachers?
- What type of structure will SSU have or implement, a Dean of Education, a director, a department head? Decision needs to be made early on to set up the structure of the program so questions and problems can be addressed on an immediate basis. NCATE will also be looking at the faculty structure of the proposed program.
- Some states require that you be licensed in the content area in which you are teaching. SSU needs to look into whether or not you are required to be licensed to teach a particular content area within the state of Georgia?
- Several of the degree curriculums being presented already have endorsements from persons
in the local community. Letters of endorsement have been written and more will be forthcoming.

- Team members present were charged with reviewing the six degree programs to make sure courses listed will cover what a student needs to graduate with a solid education degree. Recommendations are welcomed from those present as well as information shared by colleagues within departments and the local school system.
- Dr. Barnette also said to look at programs/universities that you know are strong and pull ideas from their programs that may be incorporated into Savannah State's program. Deadline set for next Wednesday to return feedback.

Questions presented to Dr. Barnette:

Q1. What is the rationale behind moving forward baccalaureate degree proposals as opposed to the model of the MAT hen in fact it seems as if, nationally, when looking across Georgia, for example Georgia College and others, you have that and already moving toward a graduate degree that is inclusive of that baccalaureate degree?

A1. That path could have been chosen, but you need to have an inventory of the faculty SSU has now because in order to move forward an MAT program, you need to have enough faculty that are identified as graduate level faculty. Dr. Barnette stated that he prefers a traditional capacity over MAT models and once SSU gets a program on board, then SSU can move forward with that model, but his recommendation as the consultant is to stay with the model that SSU has now because there is a future need for those particular areas.

Dr. Barnette called the Board of Education and spoke with the consultants for Technology Education and Family and Consumer Science and found that there was a great need for Technology Education, Family and Consumer Science and Business Education programs. The consultants are more than willing to lend a helping hand to SSU to get those programs onboard.

Basically, Dr. Barnette is choosing to start off on an avenue where SSU can get the programs approved versus some of the other models that can be seen in the University System of Georgia.

Q2. An education program is already established in this city at Armstrong Atlantic State University, so how do you perceive in the future, in our city, that we compete with them in recruitment or enrollment?

A2. You have had a relationship with Armstrong in the past, but right now there is no relationship, so you are really starting new and the programs we have on the list, Armstrong is not looking at that population of students. Right now Dr. Barnette is looking at what they are approved to offer and he has chosen programs that AASU is not offering. Students that would have normally have chosen Armstrong, will now choose SSU. So the important thing is to look at the quality of the programs. You want the students to come out saying they were ready when they started their first job.
Q3. Participant did not see anything listed as a part of orientation to teaching. She would like to think that teacher preparation candidates would need to know something about the population they are being prepared to serve and they are not looking at one race of students and those who come out unprepared, they may be prepared to teach their particular discipline but they are not prepared to present and interact with the population of students who are waiting for their skill.

A3. Everything is gender neutral and race neutral to allow for passing of NCATE approval standard four which deals with diversity. When students exit SSU as new teachers, they will be prepared to teach students in Savannah, in China or wherever they may go. Proper field placements are important to properly prepare teachers for real world scenarios once they graduate. Orientation is a built-in part of many courses, orienting the students to deal with a diverse group is very important. The second part is orienting future teachers so that they may be introduced to technology so new technology can be brought to their students.

Q4. One thing that we see from many of our new teachers the school system is lack of classroom management even after taking classroom management courses, especially in secondary education where the environment is very challenging. how do you propose to deal with that?

A4. Again, placements are very important. You cannot take the easy route; you must place students in a variety of situations so they get exposed to all sorts of environments by the time they reach senior year. You want them to be exposed to numerous situations so they know how to deal with a wide range of situations when they graduate and enter the classroom.

Q5. We have a degree program in behavior analysis, and when we talk to people in the community, particularly educators in different counties one thing they said was that they didn’t have the tools even after completing the courses, it would be a good idea if we were to use the existing behavior analysis tools we have to manage the behavior in the classroom, that is one of the reasons we moved forward the behavior analysis degree.

A5. Since we know this upfront, as we begin to infuse things in to the program, we need to try and insure that classroom management courses are high priority. Make sure classroom management courses are structured to deal with secondary as well as elementary school age children.

Q6. What is the correct number of student teaching hours? In some institutions it is 9 and others 12.

A6. Dr. Barnette stated that he is awaiting an answer from the Board of Regents. He has also found that at different institutions throughout Georgia, that the requirements are different at each institution.
Q7. There seems to be a mention of competition between Savannah State and Armstrong. How will we compete with Armstrong with the program we are proposing to offer?

A7. There are ways that Savannah State can set itself apart by choosing different methods of delivery, like perhaps offering weekend classes, or offering online classes. You have to think about delivery and innovative ways that your peers have not thought of offering. You also have to prepare your faculty to be enthusiastic about new delivery methods, such as blackboard and online classes.

Q8. Out of curiosity, I saw the education courses that are listed and we have a large number of young teachers that are entering the profession and are professionalism and professional etiquette embedded in these courses?

A8. Professional disposition is the name of such courses, but they are not listed. Each institution has a conceptual framework and integral to that framework are courses like diversity, professionalism and ethics.
The secondary education curriculum leads to the Bachelor of Science degree that develops effectiveness in communication, leadership, and other skills necessary for teaching at the high school level, community college/technical colleges, management trainer in industry, and other teaching related careers.

Survey Form

Survey Key:

5= Strongly Agree; 4= Agree; 3=Undecided; 2=Disagree; 1=Strongly Disagree

Check the survey number of each question that *best reflects* your opinion.

1. I support the development of the BSED Degree with a concentration in Biology Education, Business Education, English Education, Family and Consumer Science Education, Mathematics Education, or Technology Education

2. I would consider adding a BSED in Secondary Education degree concentration to my current major.

3. I would change my current major to the Bachelor of Science in Secondary Education.

4. As an undecided major, I would choose the BSED Degree with a Concentration in Secondary Education.
5. If you checked you would consider the BS in Secondary Education Degree, choose your preferred concentration area.

<table>
<thead>
<tr>
<th>Concentration Area</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Biology Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>b. Business Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>c. English Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>d. Family & Consumer Sciences Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>e. Mathematics Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>f. Technology Education</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Occurrence of Each Number</td>
<td>5</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>I support the development of the BSED Degree with a concentration in Biology Education, Business Education, English Education, Family and Consumer Science Education, Mathematics Education, or Technology Education.</td>
</tr>
<tr>
<td>2</td>
<td>I would consider adding BSED in Secondary Education degree concentration to my current major</td>
</tr>
<tr>
<td>3</td>
<td>I would change my current major to the Bachelor of Science in Secondary Education</td>
</tr>
<tr>
<td>4</td>
<td>As an undecided major, I would choose the BSED degree with a Concentration in Secondary Education.</td>
</tr>
<tr>
<td>5</td>
<td>Choose your preferred concentration area.</td>
</tr>
<tr>
<td>a. Biology Education</td>
<td>69</td>
</tr>
<tr>
<td>b. Business Education</td>
<td>116</td>
</tr>
<tr>
<td>c. English Education</td>
<td>55</td>
</tr>
<tr>
<td>d. Family and Consumer Science Education</td>
<td>62</td>
</tr>
<tr>
<td>e. Mathematics Education</td>
<td>114</td>
</tr>
<tr>
<td>f. Technology Education</td>
<td>123</td>
</tr>
</tbody>
</table>